Attachment 5

CALIFORNIA ENVIRONMENTAL QUALITY ACT ENVIRONMENTAL INITIAL STUDY CHECKLIST FORM ROLLING HILLS APARTMENT PROJECT Public Review Period March 17, 2023 – April 5, 2023

1. PROJECT TITLE:

Entitlements:

Rolling Hills Apartment Project

Planned Development (PD22-08), Oak Tree Removal (OTR22-16)

2. LEAD AGENCY:

Contact Person: Phone Number: Email:

3. PROJECT LOCATION:

4. PROJECT PROPONENT:

Contact Person: Phone Number: Email:

ddelgado@prcity.com

Darcy Delgado, Associate Planner

1025, 1041, 1049 Creston Road APNs: 009-641-008, -009, -010, -011, and -022

Red Tail Land Development, LLC

Kim Berry (949) 433-5610 kberry@rtacq.com

City of Paso Robles 1000 Spring Street Paso Robles, CA 93446

(805) 237-3904

5.	GENERAL PLAN DESIGNATION:	Residential Multi-Family (RMF-20)
6.	ZONING:	R4-20 (Residential, 20 units/acre)

7. PROJECT DESCRIPTION:

The proposed residential development is a 135-unit apartment project, consisting of seven, three-story buildings, and a one-story clubhouse, on an approximately 6.12-acre site. The site has a General Plan land use designation of Residential Multi-Family (RMF-20) and is zoned R4-20 (Residential, 20 units/acre). Both the General Plan and the zoning allow for a maximum density of 20 dwelling units per acre. Fractional zoning is also allowed per the multifamily zoning designation.

The seven residential buildings alternate between two building types to create varied roof forms and massing. Of the 135 units, there are 62 one-bedroom / one-bathroom apartments, 52 two-bedroom / twobathroom apartments, and 21 three-bedroom / two-bathroom apartments. A total of 267 onsite parking spaces are provided (1.98 spaces per unit) consisting of 82 single-car garages, 53 carports, and 13 motorcycle parking stalls. As part of the project, Creston Road will be widened to support frontage improvements.

There are numerous on-site trees, including three native oak trees, of which one tree is proposed for removal. The City has an Oak Tree Preservation Ordinance which requires the City Council to authorize the removal of trees that are not clearly diseased or dying. This project will require the City Council review the oak tree requested for removal.

8. Surrounding Land Uses and Setting: Briefly describe the project's surroundings:

The Project site is vacant and has no existing structures or improvements. Existing access is provided to the Project property off Rolling Hills Road via a dirt driveway. There are no powerlines that run along Creston Road. The Project site has existing powerlines that run along the western and eastern property lines and are proposed to be removed. The Project site is surrounded by various uses. The property directly adjacent and to the east is home to the Children's Academy Montessori Preschool. Trinity Lutheran Church & School, a Latter-day Saint church, and American Challenge Driving School are located south of the Project site across Creston Road. Residential housing can be found north and west of the Project site and Williams Plaza, a neighborhood commercial shopping center (Planet Fitness, Dollar Tree, Rite Aid and Smart & Final) is also directly east across Rolling Hills Road.

The topography of the area is level to moderately sloping. Water flows from the North to the Southeast portion of the site where an existing drain inlet collects stormwater. Then, it is carried under Rolling Hills Road through an 18-inch stormdrain and releases it to a basin East of Rolling Hills Road.

9. Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement.):

None

10. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

In accordance with AB 52, the City provided formal notification on 01/27/2023 to the designated contact or tribal representative of traditionally and culturally affiliated California Native American tribes that have requested notice. Consultation with the Xolon Salinan Tribe and the Salinan Tribe of Monterey and San Luis Obispo Counties resulted in a request for a Phase 1 be performed. Staff provided both tribes with the recommended mitigation measure to require onsite monitoring during initial ground disturbance, which was satisfactory in lieu of requiring a Phase 1. At the timing of publishing this report, no additional consultation requests have been received.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact," as indicated by the checklist on the following pages.

	Aesthetics		Agriculture / Forestry Resources		Air Quality
\square	Biological Resources	\boxtimes	Cultural Resources		Energy
	Geology/Soils		Greenhouse Gas Emissions		Hazards & Hazardous Materials
	Hydrology/Water Quality		Land Use / Planning		Mineral Resources
	Noise		Population / Housing		Public Services
	Recreation	\boxtimes	Transportation	\boxtimes	Tribal Cultural Resources
	Utilities / Service Systems		Wildfire	\boxtimes	Mandatory Findings of Significance

DETERMINATION (To be completed by the Lead Agency)

On the basis of this initial Discussion:

I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

<u>Felgado</u>

03/16/2023

Date

EVALUATION OF ENVIRONMENTAL IMPACTS

- 1. A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors, as well as general standards (e.g., the project would not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2. All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3. Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4. "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level.
- 5. Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a) Earlier Analyses Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6. Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7. Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8. This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9. The explanation of each issue should identify:
 - a) the significance criteria or threshold, if any, used to evaluate each question; and
 - b) the mitigation measure identified, if any, to reduce the impact to less than significance

	Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source				
I. A	I. AESTHETICS. Except as provided in Public Resources Code Section 21099, would the project:									
a)	Have a substantial adverse effect on a scenic vista?				\square					
	<u>Discussion</u> : The project site is an infill development site in corridor and does not provide unique scenic vistas to offsi scenic vista as it complies with building height requirement	te uses. Therefor	re, proposed dev	elopment will no	ot have an adve					
b)	Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?			\boxtimes						
	Discussion: The project site is vacant and there are no rock outcroppings; however, there are numerous on-site trees, including various native oak trees, one of which is proposed to be removed (further discussion regarding impacts to oaks is in Section IV Biological Resources). The tree is located near Rolling Hills Road and is recommended for removal due to the frontage improvements that are required which will impact the tree. The single tree proposed for removal is in poor condition, has had limbs cut due to overhead utility lines, and due to being located on an infill site inside an urban area, it does not contribute to a scenic highway. Based on these factors, removal of the trees will be a less than significant impact.									
c)	Substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?					2				
	<u>Discussion:</u> The proposed building height does not excee is no greater than three (3) stories for any building. The p Hills Road and 35-feet from Creston Road. Landscaping adjacent neighborhoods. Based on the proposed building the urbanized setting will be less than significant.	roject has also b along the perime	een designed to eter property line	be setback appro	oximately 45-fe s development	et from Rolling from the				
d)	Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?			\boxtimes		1, 2, 10				

Issu	ies	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source				
II.	II. AGRICULTURE AND FORESTRY RESOURCES. In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:									
a)	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?					1				
	<u>Discussion</u> : The project site is designated in the General Plan and is zoned on the City's Zoning Map for high density residential development. The property is not identified in the City General Plan, Open Space Element (Figure OS-1, Important Farmland) as having either prime or unique farmland of statewide importance. Therefore, the project would not result in impacts on converting prime or other significant soils to urban land uses.									
b)	Conflict with existing zoning for agricultural use, or a Williamson Act contract?				\boxtimes					
	<u>Discussion</u> : The project would not conflict with zoning for agriculture, and is not under a Williamson Act Contract.	r agricultural use	e. The Project Site	e is in an urbani	zed area, is not	zoned for				
c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)), timberland (as defined by Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?				\boxtimes					
d)	Result in the loss of forest land or conversion of forest land to non-forest use?				\boxtimes					
e)	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?									
	<u>Discussion (c-e)</u> : The project site does not conflict with ex- forest land. This is an infill site and all surrounding uses in facility uses. There is no rezoning process necessary for th City's Housing Element for Residential Multi-Family uses	nclude built parc his project, as the	els with residentia proposed develo	al, commercial, pment aligns w	and/or instituti	onal/public				

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source					
III. AIR QUALITY. Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make the following determinations. Would the project:										
a) Conflict with or obstruct implementation of the applicable air quality plan?					11					
b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?			\boxtimes		11					
c) Expose sensitive receptors to substantial pollutant concentrations?			\boxtimes		11					
The potential for future project development to create adverse air quality impacts falls generally into two categories: Short term and Long term impacts. Short term impacts are associated with the grading and development portion of a project where earth work generates dust, but the impact ends when construction is complete. Long term impacts are related to the ongoing operational characteristics of a project and are generally related to vehicular trip generation and the level of offensiveness of the onsite activity being developed. <i>Short term impacts:</i> An Air Quality Assessment was prepared for the project by Padre Associates (Attachment 4). Predicted maximum daily construction-generated emissions for the proposed project are summarized in Table 2 (below). Construction-generated emissions are short term and of temporary duration, lasting only as long as construction activities occur, but would be considered a significant air quality impact if the volume of pollutants generated exceeds the SLOAPCD's thresholds of significance. The emission projections in Table 2 account for the conventional construction equipment such as backhoes, dozers, compactors, excavators, graders, loaders, paving machines, scrapers, and haul trucks that will be utilized during grading and general construction activities. Additional sources of air pollutant emissions include emissions from on-road motor vehicles used to transport materials and personnel. As identified in the Air Quality Assessment, Table 2 Estimated Project Construction Criteria Pollutant Emissions demonstrate that although the construction activities would increase the emission of the O3 precursor pollutants ROG and NOx, DPM, and fugitive dust, it would not exceed the thresholds of significance established by the SLOAPCD for purposes of reducing air pollution and its deleterious health effects, and therefore										
construction would not result in a cumulatively considerable ne under an applicable federal or State ambient air quality standard As recommended by Padre, since the Project is located within 1, to implement the SLOAPCD recommended construction mitig required to mitigate for air quality. The addition of the pollut fugitive dust emissions. Therefore, project conditions of approv significant.	1. 000 feet of sever gation measures ant-reduction me	al sensitive recept , even though the easures will help	tors, the constru- e project is not to minimize n	action phase sho exceeding three uisance impacts	ould be required esholds and not s and to reduce					

Table 2.	Table 2. Estimated Project Construction Criteria Pollutant Emissions										
	ROG + NOx		PM10		C	PM	Fugitive Dust				
Peak Emissions	Daily (Ibs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)			
Thresholds (Tier 1/ Tier 2)*	137	2.5/6.3			7.0	0.13/0.32		2.25			
Project Construction Emissions	91.7	0.85	3.02	0.058	5.58	0.001		0.023			
Threshold Exceeded for Emissions?	No	No/No			No	No/No		No			
Notes: ROG – Reactive organic gases, NOx – Oxides of nitrogen, PM ₁₀ – Particulate matter with a diameter of 10 microns or less, PM _{2.5} – Particulate matter with a diameter of 2.5 microns or less, CO – Carbon Monoxide, SO ₂ – Sulfur Dioxide * SLOAPCD, 2012 – Not applicable											

Long term impacts:

Implementation of the project would result in long-term operational emissions of criteria air pollutants such as PM10, PM2.5, and CO as well as ozone precursors such as ROG and NOX. Project-generated increases in emissions would be predominantly associated with motor vehicle use. Long-term operational emissions attributable to the project are identified in Table 3 and are compared to the operational significance thresholds established by the SLOAPCD. As shown in Table 3, the Project's emissions would not exceed any SLOAPCD thresholds for any criteria air pollutants, therefore impacts would be less than significant and no mitigation is required.

Table 3. Estimated Project Operational Criteria Pollutant Emissions

	RO	G + NOx	P	M 10	۵	PM	Fugi	tive Dust				
Peak Emissions	Daily (Ibs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (Ibs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)				
Operational Phase*	25	25	25	25	1.25			25				
Project Operational Emissions	5.9	0.41	0.27	0.02	0.55	0.034	0.00	0.00				
Threshold Exceeded for Emissions?	No	No	No	No	No	No	No	No				
microns or less, PM _{2.5} SO ₂ – Sulfur Dioxide * SLOAPCD, 2012 Not applicable	– Particu	ilate matter w	ith a diame	eter of 2.5 mi	crons or le	ess, CO – Ca	arbon Mo	noxide,				
Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?											\boxtimes	11
wastewater tre	atment project	t plants, fo t does not	ood pro	cessing p	lants, c	hemical p	olants,	composti	ng facilities	, refineries, lar	ious odorous em adfills, and fiber rs, therefore the	rglass moldi

Issu	ies	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source				
IV.	IV. BIOLOGICAL RESOURCES. Would the project:									
a)	Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?									
	Discussion:A Biological Resources Assessment (BRA) was prepared for the Project site by Padre Associates, Inc. (Attachment 6). The field assessment was conducted in March 2022 during the typical blooming period for most special-status plant species known to occur in the Project region. The assessment did not identify any special status plants within the survey area. Based on the field survey observations and habitat conditions (periodic mowing, dominance of disturbance-adapted plant species) no special-status plant species are likely to occur within the Project Site. In addition, no special-status wildlife species or evidence of nesting birds were observed during the March 2022 field survey. However, the Project site may provide suitable habitat to support some special-status wildlife species, based on suitable habitat and regional (less than five miles) documented occurrences. These species include the Northern legless lizard, San Joaquin kit fox, American badger, and migratory nesting birds.Although the BRA concluded that the potential for impacts to biological resources as a result of the proposed project is considered low, direct impacts to special-status wildlife could result if present during project construction. As noted above, specific wildlife species that could be potentially impacted include the Northern legless lizard, San Joaquin kit fox, American badger, and other migratory nesting birds. Any impacts to bird species are most likely to occur if construction activities take place during the typical avian nesting season, generally February 1 through September 15. Indirect impacts may occur due to habitat loss or construction-related disturbances.Based on the potential impacts to occur to special-status biological resources, several mitigation measures are included for this project including the requirement for a pre-activity nesting bird survey and a pre-activity special-status species survey									
b)	Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?									
	<u>Discussion</u> : Wetlands or waters do not occur within the pro- review and field observations.	oject site, as con	firmed by the BR.	A based on the	results of their	literature				
c)	Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?									
	Discussion: See response IV.b above.	1		ſ	1	1				
d)	Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?									
	<u>Discussion</u> : Due to the project site being surrounded by project is not expected to increase the level of fragmentation									
e)	Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?									

Discussion: As identified by the Oak Tree Impact Report (Attachment 5) prepared by Heritage Tree Arboricultural Consulting, three oak trees were inventoried on the project site, one of which is proposed to be removed due to being in poor condition, structural issues, past failures, and the likelihood of future failure once frontage improvements for Rolling Hills Road are made which is within the tree's critical root zone.

Any significant trees (oaks) will need to be protected or mitigated if removed pursuant to the Oak Tree Preservation Ordinance (Chapter 10.01) and as indicated in Section 21.16E.250 of the Municipal Code. Consistent with the City's Ordinance, the Arborist's report notes that tree replacements will be required to mitigate the loss of the oak tree to be removed.

In the event the tree is not approved for removal, mitigation measures are listed in the Mitigation Monitoring and Reporting Table, Attachment 9 to this Initial Study, to further protect the oak trees during construction and ongoing operations of the site. With the incorporation of the mitigation measures, this project's impacts on oak trees will be less than significant.

Con Plan	flict with the provisions of an adopted Habitat servation Plan, Natural Community Conservation a, or other approved local, regional, or state habitat servation plan?			

Discussion: There are no Habitat Conservation Plans or other related plans in the City of Paso Robles. No impact will occur.

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source				
V. CULTURAL RESOURCES. Would the project:									
a) Cause a substantial adverse change in the significance of a historical resource pursuant to § 15064.5?			\boxtimes						
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to § 15064.5?		\boxtimes							
c) Disturb any human remains, including those interred outside of dedicated cemeteries?		\boxtimes							
Discussion (a-c): The applicant reported that they performed a records search and literature review, with no cultural resources coming up in the search. In addition, the applicant provided a search of the Sacred Lands File by the Native American Heritage Commission which was negative (See Attachment 7), meaning no sacred lands are recorded. Based on these searches, the potential for buried cultural resources is relatively low. There are no structures onsite to be eligible to meet historic eligibility criteria.									
Although no significant potential archaeological or cultural resources have been identified which would be impacted by development of the plan area, there is a chance for cultural resources to be uncovered during initial earthwork. Therefore, a mitigation measure has been added to the project for there to be archaeological and tribal monitoring for the initial ground disturbance. With the mitigation, project impacts would be reduced to less than significant.									
Consultation with the Xolon Salinan Tribe and the Salinan Phase 1 be performed. Staff provided both tribes with the									

Phase 1. Mitigation is also included in the Tribal Cultural Resources section of this report.

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source			
VI. ENERGY. Would the project:								
a) Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?			\boxtimes		1			

	Discussion: The proposed project includes a multi-family development, consistent with the City's General Plan and does not require rezoning. The existing land use and proposed development will not use or promote the use of non-renewable resources in a wasteful and inefficient manner. Further, the project is subject to air quality and energy efficiency requirements which are often referred to as the Green Building Standards or the Building Energy Efficiency Standards, all of which are applicable standards to reduce inefficient, wasteful, or unnecessary consumption of energy.								
b)	Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?			\boxtimes		1, 5			
	<u>Discussion:</u> The Project would be required to be in full compliance with the California Building Code, including applicable green building standards and building energy efficiency standards. Furthermore, the City's General Plan and Conservation Element ensures the conservation and preservation of energy resources by increasing the energy efficiency of buildings, appliances, and buildings to the use of alternative forms of energy. Additionally, as identified in Section VIII., since the Project would not exceed the Efficiency Threshold for operational emissions or operational emission plus the amortized construction emissions, the Project would not conflict with the CAP, Updated Strategic Action Plan Update, or City of Paso Robles Climate Action Plan (PRCAP).								

Issu	ies	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
VI	I. GEOLOGY AND SOILS. Would the project:					
a)	Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:			\boxtimes		
	 Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map, issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42. 			\boxtimes		1, 2, 3
	Discussion: The potential for and mitigation of impacts that may result from fault rupture in the project area are identified and addressed in the General Plan EIR, pg. 4.5-8. There are two known fault zones on either side of the Salinas River Valley. The Rinconada Fault system runs on the west side of the valley, and grazes the City on its western boundary. The San Andreas Fault is on the east side of the valley and is situated about 30 miles east of Paso Robles. The City of Paso Robles recognizes these geologic influences in the application of the California Building Code (CBC) to all new development within the City. Review of available information and examinations indicate that neither of these faults is active with respect to ground rupture in Paso Robles. Soils and geotechnical reports and structural engineering in accordance with local seismic influences would be applied in conjunction with any new development proposal. Based on standard conditions of approval, the potential for fault rupture and exposure of persons or property to seismic hazards is not considered significant. There are no Alquist-Priolo Earthquake Fault Zones within City limits.					onada Fault east side of the n the on and hnical reports clopment
	ii) Strong seismic ground shaking?					1, 2, 3, 5
	<u>Discussion</u> : The proposed project will be constructed to cu ground shaking as less than significant and provided mitig including adequate structural design and not constructing seismic ground shaking are considered less than significant	ation measures to over active or po	hat have been inc	orporated into	the design of th	is project
	iii) Seismic-related ground failure, including liquefaction?			\boxtimes		1, 2, 3
	<u>Discussion</u> : Per the General Plan EIR, the project site is lo liquefaction or other type of ground failure due to seismic reduce this potential impact, the City has a standard condi specific analysis of liquefaction potential for all building p reports into the design of the project. Impacts will be less	events and soil of tion to require supermits for new of	conditions. To im abmittal of soils a	plement the El nd geotechnica	R's mitigation l reports, which	measures to include site-
	iv) Landslides?			\boxtimes		1
	<u>Discussion</u> : Per the General Plan Safety Element, the proj Safety Element of the General Plan contains policy that pr slop stability investigations. Since this site is not high risk required as part of the construction process, the investigat reduce potential impacts due to landslides to a less than si	ohibits construc , the investigation ion would incorr	tion activities in h	igh landslide ri . However, if i	isk areas withou t was determine	it site specific ed to be
b)	Result in substantial soil erosion or the loss of topsoil?				\square	1, 3

c)	Discussion: Per the General Plan EIR the soil condition is anticipated. A geotechnical/ soils analysis will be required stability and suitability of the development proposed. Thi potential impacts due to soil stability will not occur. Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral	d prior to issuance	e of building peri	mits that will e	valuate the site-	specific soil
	spreading, subsidence, liquefaction or collapse? Discussion: See response to item VII.a.iii above indicates					
	conditions that have a low to moderate potential for liquef	action or other ty	pe of ground fail	ure due to seisi	mic events and	soil conditions.
d)	Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?			\boxtimes		
	<u>Discussion:</u> See response to item VII.a.iii above. Addition geotechnical reports with building permits, which include construction, and incorporation of the recommendations o will be required at the time of building permit submittal, the second s	site-specific ana f the reports into	lysis of liquefacti the design of the	on potential for project. The st	r all building pe	ermits for new
e)	Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?				\boxtimes	
	<u>Discussion</u> : The proposed project will be connected to the septic tanks is not applicable.	City's sewer sys	stem; and therefor	re, the issue of	site soil ability	to support
f)	Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?			\boxtimes		
	<u>Discussion</u> : There are no known paleontological or unique onsite monitoring will be required during initial earthwork recommendations will be made regarding their treatment a impacts on cultural resources.	activities. If cul	tural resources ar	e found during	grading activit	ies, appropriate

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
VIII. GREENHOUSE GAS EMISSIONS. Would the pr	oject:				
a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			\boxtimes		

Discussion:

Short term:

Construction-related activities that would generate GHG emissions include worker commute trips, haul trucks carrying supplies and materials to and from the project site, and off-road construction equipment (e.g., dozers, loaders, excavators). Table 4 from the Air Quality and Greenhouse Gas Assessment (Attachment 4) illustrates the specific construction-generated GHG emissions that would result from construction of the project. Project construction would result in the generation of approximately 310.3 metric tons of CO2e over the course of construction, which is below the SLOAPCD MTCO2E Bright Line Threshold. Once construction is complete, the generation of these GHG emissions would cease.

Phase	N₂O (Tons/Year)	CH₄ (Tons/Year)	CO ₂ (Tons/Year)	MTCO₂E (Per Year)
Construction Emissions	0.019	0.053	335.4	310.3
	SLOAPCD MTCO2E Bright Line Threshold			
		Threst	nold Exceeded?	No

Table 4. Estimated Project Construction GHG Emissions

Long term:

Operation of the project would result in GHG emissions predominantly associated with motor vehicle use. Long-term operational GHG emissions attributable to the project as a whole (project site buildout) are identified in Table 5. Project operations would be expected to generate 1,421 metric tons of CO2e emissions annually.

Phase	N₂O (Tons/Year)	CH₄ (Tons/Year)	CO₂ (Tons/Year)	MTCO₂E (Per Year)
Operational Emissions	0.123	12.85	1,174	1,421
	SLOAPCI	D MTCO2E Bright	Line Threshold	1,150
	SLOAPCI	D MTCO₂E Thresi	nold Exceeded?	Yes
	353			
М	TCO2E Emission	Per Service Pop	ulation Per Year	4.0
	Efficiency T	hreshold per Ser	vice Population	4.9
		Threst	nold Exceeded?	No
MTCO ₂ E	Per Year (Operat	tional + Amortize	d Construction)	4.0
	Efficiency T	hreshold per Ser	vice Population	4.9
		Threst	nold Exceeded?	No

Table 5. Estimated Project Operational GHG Emissions

The project is compared with the SLOAPCD efficiency-based threshold of 4.9 metric tons of CO2e per project service population (Project residents + employees) per year. The SLOAPCD's approach is to identify the emissions level for which a project would not be expected to substantially conflict with existing California legislation adopted to reduce statewide GHG emissions.

Based on the assumptions used to determine operational GHG emissions, including a service population of 353, the Project would emit 4.0 MTCO2E per service population per year, which is below the SLOAPCD Efficiency Threshold of 4.9 MTCO2E per service population per year; therefore, Project operations would not generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment. In addition, the operational emissions plus the amortized construction emissions were also estimated to be 4.0 MTCO2E per service population per year and would not exceed the SLOAPCD Efficiency Threshold of 4.9 MTCO2E per service population per year. Since the Project would not exceed the Efficiency Threshold the Project for operational emissions or operational emission plus the amortized construction emissions the Project would not conflict with the CAP, Updated Strategic Action Plan Update, or City of Paso Robles Climate Action Plan (PRCAP). Therefore, the project's cumulative contribution of GHG emissions would be less than significant and the project's cumulative GHG impacts would also be less than cumulatively considerable.

b)	Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?		\boxtimes	1

<u>Discussion</u>: The project is consistent with the City's General Plan designation. Since the project is consistent with the General Plan it is also consistent with the types, intensity, and patterns of land use envisioned for the site vicinity in the General Plan, and as a result, the project would not conflict with the land use assumptions or exceed the population or job growth projections used by the City to develop the 2013 Climate Action Plan (CAP).

The City of Paso Robles is a member city of the San Luis Obispo Council of Governments (SLOCOG). SLOCOG's 2019 Regional Transportation Plan (RTP)/ Sustainable Communities Strategy (SCS) is a long-range visioning plan that balances future mobility and housing needs with economic, environmental, and public health goals. The project site is located within an existing and built-up community, consistent with the SCS. Thus, it is included in an area where urban development is both predicted and encouraged by the SLOCOG RTP/SCS. The project is considered infill development as it proposes to develop a property surrounded by urban uses with affordable housing, thereby enhancing the physical design of the urban environment by instigating land use diversity. The increases in land use diversity and mix of uses in the project area would reduce vehicle trips and VMT by encouraging walking and non-automotive forms of transportation, which would result in corresponding reductions in transportation-related emissions. The proposed project would provide a convenient proximity to transit options, a school, and retail uses for its residents. Therefore, the project would result in less than significant impacts related to this environmental criterion.

Issu	ies	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
IX.	HAZARDS AND HAZARDOUS MATERIALS.	Vould the projec	et:			
a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?				\boxtimes	
	<u>Discussion</u> : The proposed project does not include the use accidental explosion or release of hazardous substances. T					
b)	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?				\boxtimes	
	<u>Discussion</u> : The proposed project does not include the us accidental explosion or release of hazardous substances.					
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?				\boxtimes	
d)	Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code § 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				\boxtimes	
	 <u>Discussion (c and d)</u>: c) The project site is within a quarter mile of a school, how any proposed as part of the proposed development and/or d) The proposed project is not located on a list of hazardo 	construction acti us material sites,	vities. , per State Codes,	and the propos	ed developmen	t intent is
	consistent with the City's land use and zoning designation the public or the environment.	s for the site, and	d therefore would	no result in the	e creation of a h	ealth hazard to
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?				\boxtimes	
	<u>Discussion</u> : The proposed project is located over 4 miles a influence area, therefore, this issue does not directly impact			pal Airport and	d outside of the	airport
f)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				\boxtimes	

	<u>Discussion</u> : The City does not have any adopted emergence emergency response.	y response plans	s. As proposed, th	e development	would not inte	rfere with
g)	Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?			\boxtimes		
	<u>Discussion</u> : The proposed project is located in the City of and therefore is not located in the wildland urban interface development in the vicinity and therefore the impact is les	e (WUI). The pot	tential of wildland			

X.	HYDROLOGY AND WATER QUALITY. Would t	he project:				
a)	Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?			\boxtimes		
	Discussion: Water use during construction would be limited releasing water or wastewater from the site. The proposed City's Storm Water Management Program and State Water required to be incorporated into grading and construction The proposed project's Stormwater Management Plan inc. would be stabilized by landscaping including trees, shrubs development of this project on stormwater will be less that	project is subject or Resources Cor- plans for the sho ludes the constru- s, and grasses. The	et to several exist atrol Board (SWI rt and long-term action of subsurfa	ting regulations a RCB) Regulation management an ace storage chan	and programs, is. BMPs and F d protection of ibers and distur	including the PPMs are water quality. rbed soils
b)	Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?			\boxtimes		7
	Discussion: The project site is within the City limits and it municipal water supply is composed of groundwater from underflow, and a surface water allocation from the Nacim Plan (UWMP), the City of Paso Robles anticipates a water projected to be 15,088 acre-feet/year to serve developmen	the Paso Robles iento Lake pipel r demand of 9,45	Groundwater B ine project. Acco 1 acre-feet/year	asin, an allocation ording to the 202 at full buildout,	on of the Salina 0 Urban Water	s River Management
	The City's General Plan Housing Element identified this s Management Plan (UWMP) verifying there is adequate ca a comparison of unit usage rates for five large cities, the n 135 units, equating to 20,682 gpd, which is about 23 acre- accounted for and is a fraction of the water demand at full Lastly, standard conditions applied to all new developmen to mitigate its proportionate share of related impacts.	pacity to serve t nulti-family secto feet per year. Ba buildout. There	he project based or is estimated to used on these fact fore impacts to g	on the number of o use approximat tors, water use for roundwater supp	of units. Using of ely 153 gpd. The or this project he plies are less the	estimates from he project has has been an significant.
c)	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:					10
	<u>Discussion</u> : The proposed new/replaced impervious surface City and Regional Water Quality Control Board Post-Con- watershed that the project will account for in its stormwater run-on away from the development, to defer having to mit Requirements (PCRs) as outlined in the Regional Water Q collected prior to entering the site through drain inlets locat the stormwater to bypass the site.	struction Stormy er design. The by igate the stormw puality Control B ated near the pro	vater Requireme /pass system for /ater run-on for I doard, Resolutior perty lines and c	nts (PCRs). Add off-site run-on v Post Storm Wate n No. R3-2013-0 onveyed through	itionally, there was designed to r Management 032. Off-site ru n storm drain p	is an off-site o direct off-site Construction in-on is ipe that forces
	PCRs 1 through 4 will be satisfied by a variety of method stormwater runoff is treated, the stormwater leaves the site concentrated and directed to a junction structure located n bubble up and be collected by a drain inlet on Rolling Hill basin. The existing 18-inch pipe will be upsized to 24 inch stormwater runoff is eventually collected and then convey discharge at an existing concrete channel south of Creston minimum drainage requirements outlined in the City of Pa Board's PCRs. Based on the stormwater retention plan, th	e by drain inlets ear Buildings 1 a ls Road that disc nes to account fo ed in storm drain Road. In conclu aso Robles Stand	used as bubble u and 2. Stormwate harges across the r additional runo n pipe that runs u ision, the project ard Specification	p devices at eith er runoff from th e road to an exist ff from the proje under and across 's drainage syste ns and the Regio	er driveway, or e eastern drive ing roadside st ect site. The rer Creston Road. em was designe	it is way will ormwater naining The pipe will d to meet
	result in a substantial erosion or siltation on- or off- site;			\boxtimes		

	<u>Discussion</u> : The proposed project, as discussed in Section VII. Geology/Soils, the site is generally flat, and therefore will not result in substantial erosion on or off-site. Additionally, in compliance with State and local regulations, during construction erosion and/or stormwater control measures will be implemented during site disturbance; therefore the project is not expected to result in substantial erosion or siltation.						
	ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite;			\boxtimes			
	 create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or 			\boxtimes			
	iv) impede or redirect flood flows?			\boxtimes			
	<u>Discussion (ii-iv)</u> : See the discussion in X.a (above) for be installed and implemented to decrease the amount/rate				ach. Measures a	nd BMPs will	
d)	In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?			\boxtimes			
	<u>Discussion</u> : The proposed project is located in a FEMA F annual chance for flood hazard. The project is a residentia with oils on asphalt. Since the risk of flood is minimal, in	al development, s	o pollutants wou	ald be limited to	those normally		
e)	Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?			\boxtimes			
	<u>Discussion</u> : See the discussion in X.a for discussion on th implemented to adhere to the City's Stormwater Manager						

Iss	ues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XI	. LAND USE AND PLANNING. Would the project:					
a)	Physically divide an established community?				\boxtimes	1, 2
b)	Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?				\boxtimes	1, 2
	Discussion (a and b): a) The proposed project is located in the immediate City b residential uses to the north and west, a commercial shopp south. The proposed development is consistent with the G b) The proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan protect aesthetic quality and scenic viewsheds, biological of the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed project is subject to the City General Plan the proposed plan the proposed plan the pla	ing center to the eneral Plan and 2 a and Zoning Coo	east, and single-f Zoning designatio de. These docume	amily residenti ns. No impact v ents and ordinat	al and institutio will occur. nces include sta	ndards to

protect aesthetic quality and scenic viewsheds, biological resources, cultural resources, and public health and safety. Specific requirements or policies identified in these documents are discussed in specific resource sections. Based on project design and compliance with existing zoning and land use regulations, the project would be consistent with policies adopted for the purpose of avoiding or mitigating environmental effects. No impact will occur.

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XII. MINERAL RESOURCES. Would the project:					
a) Result in the loss of availability of a known mineral resource that would be a value to the region and the residents of the state?				\boxtimes	1
b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				\boxtimes	1
Discussion (a and b): There are no known mineral resource	ces at this project	site. No impacts	will occur.		

Issues		Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XIII. NOISE. Would	d the project result in:					
increase in ambie project in excess	ubstantial temporary or permanent nt noise levels in the vicinity of the of standards established in the local pise ordinance, or applicable standards ?			\boxtimes		1
community have established. Noise neighborhoods to sources for this la attenuation featur Construction of the limit the hours of	City's General Plan Noise Element ackno generally increased for all land uses, con e generated from the project will consist the north and west. Noise resulting from and use. Because the site is a compatible res in mind (building/common area setback the project will result in short term, tempo construction as 7 am to 7 pm, excludes of ts from the noise are considered less that	npatible land use of generally the vehicle trips an land use with its cks, landscaping rary increases in construction on S	es will not create n same types of noi d outdoor commo surrounding area,), the project wou ambient noise du	oise in excess se from the adj n areas present , and has been o ld result in less ring the daytim	of the noise star acent residentia as normally ac designed with n than significar ne. Since standa	ndards al cepted noise noise nt impacts. ard conditions
	cessive groundborne vibration or			\boxtimes		1
during daytime h	evels of groundborne noise and vibration ours of construction and would cease upo be less than significant.					
airstrip or an airp has not been adop airport or public u	ted within the vicinity of a private ort land use plan or, where such a plan oted, within two miles of a public use airport, would the project expose r working in the project area to evels?					
Discussion: The p	project is not located within the geograph	ic boundaries of	the Airport Land	Use Plan, there	efore there is no) impact.

Issue	28	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XIV	. POPULATION AND HOUSING. Would the proje	ect:				
1	Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?			\boxtimes		2
Ú	Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?				\boxtimes	
1 1 1	Discussion (a and b): a) The proposed project does not result in unplanned popul therefore has been assumed in the City's infrastructure, an proposed development will be responsible for paying the r than significant.	nong other needs equired fees as p	s, such as, but not part of the City's e	limited to scho	ol and park fee	s. The
1	b) There is no housing being displaced as part of this project	ect. No impact w	ill occur.			

Potentially Significant Impact	Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
				1, 10
			\square	
			\square	
		\square		
		\square		
			\square	
· · ·	Significant Impact	Significant ImpactWith Mitigation IncorporatedImpact <tr< td=""><td>Significant ImpactWith Mitigation IncorporatedSignificant Impact<td>Significant Impact With Mitigation Incorporated Significant Impact No Impact Impact Impact Impact Impact</td></td></tr<>	Significant ImpactWith Mitigation IncorporatedSignificant Impact <td>Significant Impact With Mitigation Incorporated Significant Impact No Impact Impact Impact Impact Impact</td>	Significant Impact With Mitigation Incorporated Significant Impact No Impact Impact Impact Impact Impact

Discussion: The proposed project would not result in a significant impact to fire or police protection, as the project site is located in the current service area by the City of Paso Robles Police and Fire Department. Cal Fire, County Sheriff, and California Highway Patrol may also respond to emergencies in the area. The project site is within the Paso Robles Joint Unified School District. Solid waste is managed by the San Luis Obispo Regional Integrated Waste Management Authority. Several parks and public recreational facilities are located within proximity to the project site, including but not limited to Winifred Pifer Elementary School, Daniel Lewis Middle School, Centennial Park, Paso Robles Golf Club, and the regional Barney Schwartz Park is located northeast of the site, off State Highway 46.

The proposed project is consistent with the City General Plan and Zoning Code, and would not create significant impacts to local public services because it would not induce significant population growth and does not include a use that would significantly increase demand resulting in the requirement for new facilities. Regarding cumulative effects, the applicant is required to pay fees, which would go towards provision of municipal services. Therefore, potential impacts would be less than significant.

Issues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XVI. RECREATION.					
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?					1
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?			\boxtimes		1
<u>Discussion (a and b)</u> : The proposed project would not resu demand for parks and recreational facilities in the immedia facilities, including large central tot lot, clubhouse/gym, an improvements of existing parks as well as periodically ass accommodate anticipated land use patterns. As a result, se years. Based on these ongoing actions, impacts to recreation	ate area as the de nd pool. The City essing usage of p veral renovation	evelopment plan d y's Parks and Rec park facilities, and upgrades to exist	lemonstrates th reation Elemen l identifying ph ing parks have	ere will be on-s at of the Genera aysical changes been made in t	ite recreational l Plan dictates needed to

Issu	les	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XV	II. TRANSPORTATION. Would the project:					
a)	Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadway, bicycle and pedestrian facilities?		\boxtimes			
	 <u>Discussion:</u> The 135-unit apartment project is consistent with the City's R4 and RMF-20 zoning and land use designations in conjunction with the fractional density program. The impacts of the added traffic trips from this project on the circulation system are anticipated with the City's 2019 Circulation Element, as well as the recent Creston Road Complete and Sustainable Streets Corridor Plan (Corridor Plan). A Traffic Impact Study (TIS) was prepared for this project by Central Coast Transportation Consulting, dated February 2023 (See Attachment 8). The purpose of the TIS is to provide the City with data that can be used to make decisions regarding potential traffic impacts of a proposed project, and any associated improvements that would be required to mitigate these impacts to a level of insignificance as defined by the City's General Plan Policies. The TIS estimated the project would generate 941 trips per weekday, including 65 trips during the AM peak hour and 79 trips during the PM peak hour. With construction of a single lane roundabout at Creston Road/Rolling Hills Road (#2) all study locations would operate 					
	 PM peak hour. With construction of a single lane roundabout at Creston Road/Rolling Hills Road (#2) all study locations would operate acceptably under Existing Plus Project Conditions. Under Cumulative Conditions, the intersection would operate acceptably; however, westbound queues are expected to reach the Creston Road/Melody Drive (#3) intersection during peak periods. However, no additional lanes are recommended as the entire corridor experiences congestion during the school drop off and pick up and congestion is minimal during off peak times. The study recommends the Creston Road driveway be limited to left-in, right-in, right-out only. The study also recommends a small median in the two-way left turn lane to allow left turns into the site and the driveway across Creston Road but restrict outbound left turns on to Creston Road. It also recommends the project construct the following improvements consistent with the Creston Road Complete and Sustainable Streets Study: Extend curb, gutter, and sidewalk improvements on the north side of Creston Road from project frontage to Orchard Drive. Install curb ramps and bulbouts on the north and south side of Creston Road at the existing Orchard Drive crosswalk. Replace existing school crossing signage at Orchard Drive with CAMUTCD compliant signage. Replace overhead sign with S1-1 sign, replace pole mounted sign with SW24-2(CA) sign, and install SW-24-3 (CA) sign in advance of the crosswalk. 					
	• Replace existing overhead flashing beacons with overhead With the recommended improvements, the project will be Study, City's Circulation Element, and the City's Pedestri transportation will be less than significant.	consistent with t	he Creston Road	Complete and S	Sustainable Stre	
b)	Conflict or be inconsistent with CEQA Guidelines § 15064.3, subdivision (b)?			\boxtimes		

	Discussion: A Traffic Impact Study (TIS) was prepared for this project by Central Coast Transportation Consulting, dated February 2023 (Attachment 8), which concluded the project will have a less than significant impact on vehicle miles traveled (VMT) based on the City's 2022 Transportation Impact Analysis Guidelines thresholds.					
c)	Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?				\boxtimes	
	Discussion: There are no hazardous design features associated, with, planned for or will result from this project.					
d)	Result in inadequate emergency access?				\square	
	Discussion: The project has been reviewed by the City's Department of Emergency Services. The project will not impede emergency access, and is designed in compliance with all emergency access safety features and to City emergency access standards.					

Issu	ies	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XV	III. TRIBAL CULTURAL RESOURCES.					
a)	Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code § 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:		\boxtimes			
	 Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or 			\boxtimes		
	 ii) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code § 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code § 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe. 					
	Discussion: The applicant reported that they performed a records search and literature review, with no cultural resources coming up in the search. In addition, the applicant provided a search of the Sacred Lands File by the Native American Heritage Commission which was negative (See Attachment 7), meaning no sacred lands are recorded. Based on these searches, the potential for buried cultural resources is relatively low. There are no structures onsite to be eligible to meet historic eligibility criteria.					

Although no significant potential archaeological or cultural resources have been identified which would be impacted by development of the plan area, there is a chance for cultural resources to be uncovered during initial earthwork. Therefore, a mitigation measure has been added to the project for there to be archaeological and tribal monitoring for the initial ground disturbance. With the mitigation, project impacts would be reduced to less than significant.

Consultation with the Xolon Salinan Tribe and the Salinan Tribe of Monterey and San Luis Obispo Counties resulted in a request for a Phase 1 be performed. Staff provided both tribes with the recommended mitigation measure, which was satisfactory in lieu of requiring a Phase 1. Mitigation is also included in the Cultural Resources section of this report.

Issu	165	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XI	X. UTILITIES AND SERVICE SYSTEMS. Would	the project:				
a)	Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?		d that will serve t	his project. Per	the City's Gen	3, 7, 8
	<u>Discussion:</u> There is existing water and sewer available along Creston Road that will serve this project. Per the City's General Plan EIR, Urban Water Management Plan, and Sewer System Management Plan, the City's water and wastewater treatment facilities are adequately sized, including planned facility upgrades, to provide water needed for this project and treat effluent resulting from this project. Therefore, this project will not result in the need to construct new facilities. There are plans to improve the Creston Road Corridor that include the installation of a roundabout at the southeast corner of the project site. The proposed drainage for Creston Road II was designed in a way that when the Creston Road Corridor project moves forward, Creston Road II drainage will be able to assimilate into the corridor project's drainage.					
b)	Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry and multiple dry years?			\boxtimes		7
	 <u>Discussion</u>: The project site is within the City limits and it is zoned to allow for high density residential development. The City's municipal water supply is composed of groundwater from the Paso Robles Groundwater Basin, an allocation of the Salinas River underflow, and a surface water allocation from the Nacimiento Lake pipeline project. According to the 2020 Urban Water Management Plan (UWMP), the City of Paso Robles anticipates a water demand of 9,451 acre-feet/year at full buildout, with supply availability projected to be 15,088 acre-feet/year to serve development during normal, dry, and multiple dry years. The City's General Plan Housing Element identified this site for future availability for water and sewer service, with the Urban Water Management Plan (UWMP) verifying there is adequate capacity to serve the project based on the number of units. Using estimates from a comparison of unit usage rates for five large cities, the multi-family sector is estimated to use approximately 153 gpd. The project has 135 units, equating to 20,682 gpd, which is about 23 acre-feet per year. Based on these factors, water use for this project has been accounted for and is a fraction of the water demand at full buildout. Therefore impacts to groundwater supplies are less than significant. Standard conditions applied to all new development require the payment of development impact fees for water service expansion to mitigate its proportionate share of related impacts. 					
c)	Result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?				\boxtimes	
	<u>Discussion:</u> The project's generated wastewater flows wor the average daily influent flow to the WWTP was 2.11 Me below the WWTP design capacity of 4.9 MGD. As noted equivalent amount of wastewater received by the project's additional flow from the project would be able to be hand	GD and the maxiabove in the among domestic water	mum influent flo ount of water used use. According to	w was 2.39 MC l by the project	GD in August, v , there is anticip	which is well pated to be an
d)	Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?					
	Discussion: The City owns a fully permitted Class III non-hazardous solid waste landfill which is estimated to have sufficient airspace capacity to the year 2077, based on a 2021 Updated Joint Technical Document that was prepared for the landfill. The City generates 45,000 tons of solid waste annually. It dumps this waste into its own landfill. The landfill has a maximum permitted capacity of 6,495,000 cubic yards and a maximum permitted throughput of 450 tons of solid waste per day and 75,000 tons per year, through October 1, 2051. As of December 31, 2017, the landfill had a remaining capacity of 4,216,402 cubic yards or approximately 65% of the maximum permitted capacity.					
	the available data, a multifamily use is expected to genera dwelling units, this results in approximately 675 pounds o existing facility being able to take 75,000 tons per year, th	f solid waste per	day, or 0.33 tons	per day, or 123	3 tons per year.	

e)	Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?				\boxtimes	
	Discussion: The proposed project will comply with federal	l, state, and local	management and	l reduction stat	utes and regulat	tions.

Iss	ues	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source	
XX	K. WILDFIRE. If located in or near state responsibility are	eas or lands class	ified as very high	fire hazard sev	verity zones, wo	ould the project:	
a)	Substantially impair an adopted emergency response plan or emergency evacuation plan?				\boxtimes		
<u>Discussion</u> : The City of Paso Robles does not have an adopted emergency response plan or evacuation plan. The site is zoned high density residential development, such as what is proposed. Therefore, the project could not impair emergency plans.							
b)	Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?			\boxtimes			
c)	Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?			\boxtimes			
	<u>Discussion (b and c)</u> : As previously identified, the site has development on all sides of the property and is not considered as being located within the wildland urban interface (WUI) and therefore would not need specific measures for fire-fighting purposes, beyond emergency vehicle access, clearance around buildings, and connection to water. The project has been reviewed by the City of Paso Robles Fire Department and designed with Fire Codes in mind. Given these considerations the impact will be less than significant.						
d)	Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?						
	Discussion: The project site is relatively flat and not subje	ct to landslide po	otential or signific	ant drainage cl	nanges.		

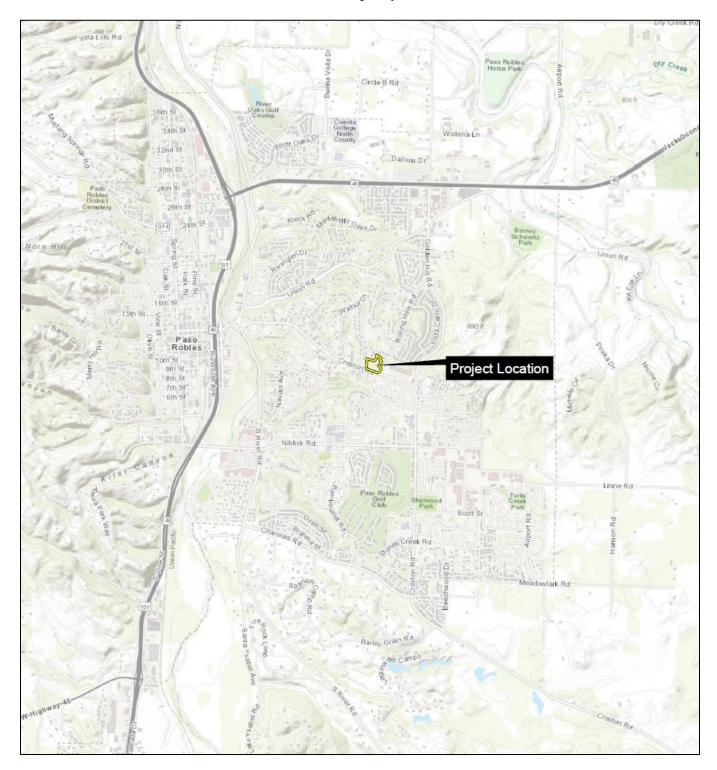
Issues		Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant Impact	No Impact	Source
XX	I. MANDATORY FINDINGS OF SIGNIFICANC	Έ.				
a)	Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?					
	<u>Discussion:</u> As noted within this environmental document, and with the mitigation measures outlined in the document, the projects future development impacts related to habitat for wildlife species and oak tree preservation will be less than significant with mitigation incorporated. The project would not result in impacts to fish habitat or impacts to fish and wildlife populations.					

b)	Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)						
	<u>Discussion</u> : Based on the location of the project being within the City's limits, consistency with the City's General Plan and Zoning Ordinance, and implementation of mitigation measures including contribution of fees to existing programs or monitoring activities, the project would not result in any impacts that are cumulatively considerable.						
c)	Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?				\boxtimes		
	<u>Discussion:</u> Since the site is zoned for residential development which is anticipated by the existing General Plan and General Plan EIR, and since it would be developed at some point in the future with development that would have similar site disturbance such as grading and infrastructure for multiple-family development, and as a result of this study identifying mitigation measures for impacts created by the project, it is not anticipated that the project will result in substantial adverse environmental impacts on human beings, either directly or indirectly.						

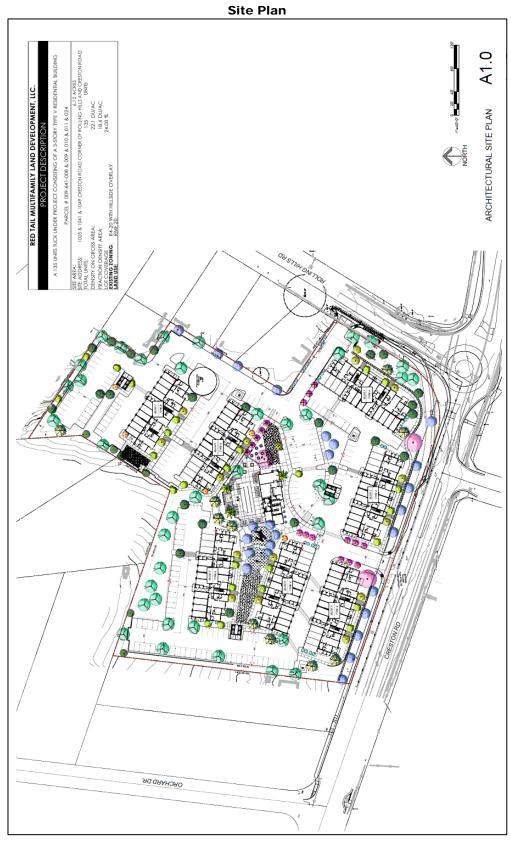
EARLIER ANALYSIS AND BACKGROUND MATERIALS.

Earlier analyses may be used where, pursuant to tiering, program EIR, or other CEQA process, one or more effects have been adequately analyzed in an earlier EIR or negative declaration. CEQA Guidelines, Section 15152(b), (f).

Earlier Documents Prepared and Utilized in this Analysis and Background / Explanatory Materials


Reference #	Document Title	Available for Review at:
1	City of Paso Robles General Plan	City of Paso Robles Community Development Department 1000 Spring Street Paso Robles, CA 93446
2	City of Paso Robles Zoning Code	Same as above
3	City of Paso Robles Environmental Impact Report for General Plan Update	Same as above
4	2005 Airport Land Use Plan	Same as above
5	City of Paso Robles Municipal Code	Same as above
6	City of Paso Robles Water Master Plan	Same as above
7	City of Paso Robles Urban Water Management Plan 2020	Same as above
8	City of Paso Robles Sewer Master Plan	Same as above
9	City of Paso Robles Housing Element	Same as above
10	City of Paso Robles Standard Conditions of Approval for New Development	Same as above
11	San Luis Obispo County Air Pollution Control District Guidelines for Impact Thresholds	APCD 3433 Roberto Court San Luis Obispo, CA 93401
12	San Luis Obispo County – Land Use Element	San Luis Obispo County Department of Planning County Government Center San Luis Obispo, CA 93408
13	USDA, Soils Conservation Service, Soil Survey of San Luis Obispo County, Paso Robles Area, 1983	Soil Conservation Offices Paso Robles, Ca 93446

Attachments:


- 1. Vicinity Map
- 2. Site Plan
- 3. Perspective Renderings
- 4. Air Quality & Greenhouse Gas Emissions Assessment (February 2023) by Padre Associates, Inc.
- 5. Arborist Report (November 2022) by Heritage Tree Arboricultural Consulting
- 6. Biological Report (April 2022) by Padre Associates, Inc.
- 7. Sacred Lands File Search
- 8. Traffic Impact Study (February 2023) by Central Coast Transportation Consulting
- 9. Mitigation Monitoring & Report Plan

IS/MND Attachment 1

Vicinity Map

IS/MND Attachment 2

IS/MND Attachment 3

Febauray 14, 2023 Project No. 2202-0712

Red Tail Multifamily Land Development 2082 Michelson Drive, 4th Floor Irvine, California 92612

Attention: Ms. Kim Berry

Subject: Letter Report, Air Quality and Green House Gas Emissions Analysis for the Proposed Rolling Hills Apartment Project, Paso Robles, California

Dear Ms. Berry:

Padre Associates, Inc. (Padre), has prepared this letter-report documenting the air quality and greenhouse gas emissions analysis for the proposed residential development project (Project) at 1049 Creston Road (APN 009-641-010), Paso Robles, California (Project Site). The analysis has been prepared in accordance with the San Luis Obispo County Air Pollution Control District (SLOAPCD) California Environmental Quality Act (CEQA) Air Quality Handbook (2012).

OVERVIEW

The purpose of the Analysis is to estimate the criteria pollutants and greenhouse gas (GHG) emissions that would be emitted by the Project and compare the estimates to the SLOAPCD air quality and greenhouse gas regulations.

Site Description and Background

The Project Site is located at 1049 Creston Road in the City of Paso Robles (City), San Luis Obispo County (County), California. The Project Site consists of a 6.21-acre parcel within Assessor Parcel Number (APN) 009-641-010. Adjacent properties consist of single-family residential properties to the north, west, northeast and southeast, a preschool located to the east, religious institutions to the south and southwest, and commercial properties to the east. The Project Site has been historically used for agricultural purposes and is currently vacant. The Paso Robles Municipal Airport is located approximately 3.25 miles northeast of the Project Site.

Project Description and Schedule

Construction of the Project is anticipated to be completed over a period of approximately two months for grading and heavy equipment work and general construction for approximately 15 months. The Project consists of the development of a multifamily apartment site consisting of 135 dwelling units located within seven buildings oriented around a proposed 2,804 square

foot (SF) amenity building, a 1,184 SF pool, and landscaped common areas. Grading activities are proposed to disturb approximately 6.21 acres over the duration of the construction phase.

The grading schedule for Project could be subject to change due to permitting, field conditions and weather conditions but is currently anticipated to require a total of 17 months to complete.

Sensitive Receptors

The closest sensitive receptors to the Project Site consist of a preschool located on the adjacent property to the east, a preschool and kindergarten through 8th grade school located on the adjacent property to the southwest, residential properties located on adjacent properties to north, west, northeast, and southeast, and religious institutions located on adjacent properties to the south and southwest.

REGULATORY THRESHOLDS

The SLOAPCD has adopted two sets of criteria pollutant significance thresholds: one for project construction phase and one for project operational phase (see Table 1) (SLOAPCD, 2012a). According to the SLOAPCD CEQA Air Quality Handbook, a project would not be in conflict with an applicable clean air plan, nor violate an air quality standard and/or have a significant impact to air quality if the project's criteria pollutant emissions were below the following thresholds.

	ROG + NO _x		PM ₁₀		DPM		Fugitive Dust	
Thresholds	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)
Construction Phase (Tier 1/ Tier 2)*	137	2.5/6.3			7.0	0.13/0.32		2.25
Operational Phase*	25	25	25	25	1.25			25
Notes: ROG – Reactive organic gases, NOx – Oxides of nitrogen, PM ₁₀ – Particulate matter with a diameter of 10 microns or less, PM _{2.5} – Particulate matter with a diameter of 2.5 microns or less, CO – Carbon Monoxide, SO ₂ – Sulfur Dioxide * SLOAPCD, 2012 Not applicable								

Table 1. Criteria Pollutant Thresholds

The SLOAPCD has adopted GHG thresholds in an effort to meet the GHG reduction goals of AB 32 (SLOAPCD, 2012a and SLOAPCD, 2012b). The two GHG significance thresholds that have been established for residential and commercial projects are as follows:

 Bright Line Threshold of 1,150 million metric tons of carbon dioxide equivalent (MTCO₂E) per year; and

 Efficiency Threshold of 4.9 MTCO₂E/Service Population (residents + employees)/year (MTCO₂E/SP/year).

Emissions from the construction phase of residential projects must be amortized over 50 years and added to the operational phase GHG emissions. The operational phase emissions plus the amortized construction emissions must be compared to the Bright Line Threshold or Efficiency Threshold.

Emissions Estimates

The primary sources of pollutant emissions for the Project's construction phase would result from the use of internal combustion engines and soil disturbance during grading activities. Specifically, conventional construction equipment such as backhoes, dozers, compactors, excavators, graders, loaders, paving machines, scrapers, and haul trucks will be utilized during grading and general construction activities. Additional sources of air pollutant emissions include emissions from on-road motor vehicles used to transport materials and personnel. Operational emissions would result primarily from emissions due to electrical consumption and from resident on-road motor vehicle use.

Emissions modeling was conducted to estimate the criteria pollutant and GHG emissions for the construction and operational phases of the Project. The emissions were estimated using the most recent emission factors and load factors obtained from the California Emissions Estimator Model® (CalEEMod) User's Guide (Environ, 2020), Emission Factors (EMFAC) model and the South Coast Air Quality Management District (SCAQMD). Detailed source information is provided in Appendix A.

Construction and operational equipment emissions were estimated using the engine horsepower, engine emission factors, engine load factors, and hours of engine use per day. On-road vehicle emissions were estimated using the vehicle type (i.e., passenger gasoline-powered vehicle, heavy-duty diesel-powered vehicle), engine emission factors, and length of daily round trips. Operational emissions from resident on-road motor vehicle use were calculated using data from a traffic study provided by the client. Electricity use and associated emissions were estimated using estimated energy usage and emissions factors. Fugitive dust emissions from proposed soil disturbance activities related to the construction phase were calculated using emission factors, volumes of earth material disturbed, and areas of earth material disturbed. A tabulation of assumptions, references, and calculations for the project criteria pollutant emissions calculated by Padre for the Project construction and operational phases. Tables 4 and 5 list the yearly GHG emissions calculated by Padre for the Project construction and operational phases.

	ROG + NO _x		PM10		DPM		Fugitive Dust	
Peak Emissions	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)
Thresholds (Tier 1/ Tier 2)*	137	2.5/6.3			7.0	0.13/0.32		2.25
Project Construction Emissions	91.7	0.85	3.02	0.058	5.58	0.001		0.023
Threshold Exceeded for Emissions?	No	No/No			No	No/No		No

Notes:

ROG - Reactive organic gases, NOx - Oxides of nitrogen, $PM_{10} - Particulate matter with a diameter of 10 microns or less$, $PM_{2.5} - Particulate matter with a diameter of 2.5 microns or less$, CO - Carbon Monoxide, $SO_2 - Sulfur Dioxide$

* SLOAPCD, 2012

-- Not applicable

 Table 3. Estimated Project Operational Criteria Pollutant Emissions

	ROG + NO _x		PM 10		DPM		Fugitive Dust	
Peak Emissions	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)	Daily (lbs.)	Quarterly (tons)
Operational Phase*	25	25	25	25	1.25			25
Project Operational Emissions	5.9	0.41	0.27	0.02	0.55	0.034	0.00	0.00
Threshold Exceeded for Emissions?	No	No	No	No	No	No	No	No

Notes:

ROG – Reactive organic gases, NOx – Oxides of nitrogen, PM_{10} – Particulate matter with a diameter of 10 microns or less, PM _{2.5} – Particulate matter with a diameter of 2.5 microns or less, CO – Carbon Monoxide, SO₂ – Sulfur Dioxide

* SLOAPCD, 2012

-- Not applicable

As shown in Tables 2 and 3, implementation of the Project is not expected to result in an exceedance of SLOAPCD construction or operational thresholds. The emissions analysis spreadsheets and the basis of criteria pollutant emissions analysis are provided in Appendix A.

Phase	N₂O (Tons/Year)	CH₄ (Tons/Year)	CO₂ (Tons/Year)	MTCO₂E (Per Year)
Construction Emissions	0.019	0.053	335.4	310.3
	1,150			
	No			

Table 4. Estimated Project Construction GHG Emissions

Table 5. Estimated Project Operational GHG Emissions

Phase	N ₂ O CH ₄ (Tons/Year) (Tons/Year)		CO₂ (Tons/Year)	MTCO₂E (Per Year)
Operational Emissions	0.123	12.85	1,174	1,421
	1,150			
	SLOAPCL	D <i>MTCO₂E</i> Thresh	old Exceeded?	Yes
	353			
М	4.0			
	4.9			
	No			
MTCO₂E	4.0			
	4.9			
	No			

The Project's GHG construction emissions do not exceed the SLOAPCD emissions threshold of 1,150 MTCO₂E per year for the Project construction phase. The operational phase emissions do exceed the SLOAPCD Bright Line threshold of 1,150 MTCO₂E per year, but do not exceed the SLOAPCD emissions threshold of 4.9 MTCO₂E per service population. Additionally, the operational phase emissions plus the amortized construction emissions do exceed the SLOAPCD Bright Line threshold of 1,150 MTCO₂E per year, but do not exceed the SLOAPCD Bright Line threshold of 1,150 MTCO₂E per year, but do not exceed the SLOAPCD Bright Line threshold of 1,150 MTCO₂E per year, but do not exceed the SLOAPCD Bright Line threshold of 1,150 MTCO₂E per year, but do not exceed the SLOAPCD emissions threshold of 4.9 MTCO₂E per service population. The emissions analysis spreadsheets and the basis of criteria pollutant emissions analysis are provided in Appendix A.

Required Construction Mitigation Measures

The Project is located within 1,000 feet of several sensitive receptors and is proposed to grade 6.21 acres. Per the SLOAPCD CEQA Air Quality Handbook, the construction phase of the Project would at a minimum be required to implement the following SLOAPCD Mitigation Measures:

Fugitive PM₁₀ **Mitigation Measures.** The following measures shall be implemented during construction activities to reduce fugitive dust emissions. Reduce the amount of the disturbed area where possible.

• Use of water trucks or sprinkler systems in sufficient quantities to prevent airborne dust from leaving the site and from exceeding the SLOAPCD's limit of 20 percent opacity for greater than 3 minutes in any 60-minue period. Increased watering frequency would be required whenever wind speeds exceed 15 mph. Reclaimed (non-potable) water should

be used whenever possible. Please note that since water use is a concern due to drought conditions, the contractor or builder shall consider the use of an SLOAPCD-approved dust suppressant where feasible to reduce the amount of water used for dust control.

- All dirt stockpile areas should be sprayed daily and covered with tarps or other dust barriers as needed.
- Permanent dust control measures identified in the approved project revegetation and landscape plans should be implemented as soon as possible, following completion of any soil disturbing activities.
- Exposed ground areas that are planned to be reworked at dates greater than one month after initial grading should be sown with a fast germinating, non-invasive grass seed and watered until vegetation is established.
- All disturbed soil areas not subject to revegetation should be stabilized using approved chemical soil binders, jute netting, or other methods approved in advance by the SLOAPCD.
- All roadways, driveways, sidewalks, etc. to be paved should be completed as soon as possible. In addition, building pads should be laid as soon as possible after grading unless seeding or soil binders are used.
- Vehicle speed for all construction vehicles shall not exceed 15 mph on any unpaved surface at the construction site.
- All trucks hauling dirt, sand, soil, or other loose materials are to be covered or should maintain at least two feet of freeboard (minimum vertical distance between top of load and top of trailer) in accordance with California Vehicle Code (CVC) Section 23114.
- "Track-Out" is defined as sand or soil that adheres to and/or agglomerates on the exterior surfaces of motor vehicles and/or equipment (including tires) that may then fall onto any highway or street as described in CVC Section 23113 and California Water Code 13304. To prevent 'track out', designate access points and require all employees, subcontractors, and others to use them. Install and operate 'track-out prevention device' where vehicles enter and exit unpaved roads onto paved streets. The 'track-out prevention device' can be any device or combination of devices that are effective at preventing track out, located at the point of intersection of an unpaved area and a paved road. Rumble strips or steel plate devices need periodic cleaning to be effective. If paved roadways accumulate tracked out soils, the track-out prevention device may need to be modified.
- Sweep streets at the end of each day if visible soil material is carried onto adjacent paved roads. Water sweepers shall be used with reclaimed water used where feasible. Roads shall be pre-wetted prior to sweeping when feasible.

- All PM₁₀ mitigation measures required should be shown on grading and building plans.
- The contractor or builder shall designate a person or persons to monitor the fugitive dust emissions and enhance the implementation of the measures as necessary to minimize dust complaints and reduce visible emissions below the SLOAPCD's limit of 20 percent opacity for greater than 3 minutes in any 60-minute period. Their duties shall include holidays and weekend periods when work may not be in progress. The name and telephone number of such persons shall be provided to the SLOAPCD Compliance Division prior to the start of any grading, earthwork, or demolition.

CRITIERA POLLUTENT IMPACT ANALYSIS

Based on an analysis of the Project scope and the criteria pollutant emissions calculation results, the Project construction and operational phases would not conflict with the SLOAPCD's 2001 Clean Air Plan (CAP), violate any air quality standard, substantially contribute to any air current quality violation, or generate a cumulatively considerable net increase in criteria pollutants O_3 and PM_{10} . The sections below provide a discussion of the results of the analysis.

Construction Phase

Criteria pollutant emissions would be generated by equipment used for the construction phase of the Project. These emissions include NOx and ROGs which are considered O_3 precursors, potentially resulting in atmospheric O_3 formation. The County is currently in nonattainment status for both the 8-hour and 1-hour ozone standards (SLOAPCD, 2023). Emissions would also include PM₁₀ for which the County is in non-attainment status (SLOAPCD, 2023). The construction phase would include diesel powered backhoes, bulldozers, compactors, cranes, excavators, graders, loader, lifts, paving machines, scrapers and a skid steer. All equipment used during the Project would have Tier 3 and Tier 4 compliant engines.

Emissions resulting from Project construction equipment would temporarily increase local pollutant concentrations. Daily or quarterly emissions would not exceed SLOAPCD thresholds; therefore, the incremental increases in NOx, ROGs, and PM_{10} that would contribute to non-attainment would not be cumulatively considerable. Additionally, the Project would implement the required Fugitive PM_{10} Mitigation Measures during construction activities to further minimize PM_{10} generation from fugitive dust at the Project site. Therefore, the Project construction activities would not conflict with or obstruct implementation of the CAP, violate any emissions standards, or contribute substantially to an existing or projected air quality violation.

Criteria pollutants and odors from fuel combustion would be generated by the construction equipment but would be temporary during construction activities. Odors would likely dissipate quickly in the open air. The contractor or builder will locate equipment staging area at locations on site that are furthest from adjacent sensitive receptors. Dust would be mitigated by implementation of the Fugitive PM₁₀ Mitigation Measures. Therefore, the Project

would not expose sensitive receptors to substantial pollutant concentrations and would not create objectionable odors affecting a substantial number of people.

Operational Phase

Criteria pollutant emissions during the operational phase would primarily be generated by resident vehicle trips. Daily or quarterly emissions would not exceed SLOAPCD thresholds; therefore, the incremental increases in NOx, ROGs, and PM₁₀ that would contribute to non-attainment would not be cumulatively considerable. The Project operational phase would also not violate any emissions standards or contribute substantially to an existing or projected air quality violation.

The SLOAPCD indicates that a Project is consistent with the CAP if it shows conformance with land use and transportation control measures and strategies. The control measures and strategies that are applicable to the Project consists of the following:

Local and Regional Transit System Improvements. The purpose of this measure is to encourage the use of public transportation. The area of the Project Site is serviced by the San Luis Obispo RTA. Access to the RTA is located within walking distance of the Project Site. Easy access to the RTA would result in increased use of public transportation.

Bicycling and Bikeway Improvements. The purpose of this measure is to increase the County average use to bicycle modal share of five percent or more. The Project Site is located in an area of the City that has access to numerous Class II bicycle lanes.

Traffic Flow Improvements and Circulation Management. The purpose of this measure is to improve traffic flow to allow improved non-motorized transportation. The Project would include improvements to Creston Road to enhance traffic flow.

Compact Communities and Mixed Land Use Planning. The general purpose of these strategies is to regulate growth to reduce dependence on motorized transportation and provide a mix of compatible land uses that will encourage the use of non-motorized transportation. The area of the Project Site is located at a convenient proximity to public transportation, retail stores, private schools, public schools, and religious institutions, which will increase the likelihood the residents will use non-motorized transportation and public transportation.

Jobs and Housing Planning. The purpose of this strategy is to ensure that there is housing available near areas of potential employment opportunities. The Project proposes 135 affordable dwelling units. As indicated above the Project is located within close proximity to public transportation, retail stores, private schools, public schools, and religious institutions.

The Project would not conflict with any of the applicable control measures and strategies, therefore, would be consistent with the CAP.

Criteria pollutants and odors generated by the operational phase would be similar to the criteria pollutants and odors generated by the adjacent residential properties to the northwest, east and southeast of the Project Site; therefore, the Project would not expose sensitive

receptors to substantial pollutant concentrations or create objectionable odors affecting a substantial number of people.

GHG IMPACT ANALYSIS

Based on an analysis of the Project scope and the GHG emissions calculation results the Project construction and operational phases would not conflict with an applicable clean air plan or generate GHG emissions that may have a significant impact on the environment. The sections below provide a discussion of the results of the analysis.

Construction Phase

GHG emissions would be generated by equipment used for the construction phase of the Project. The construction phase would include diesel powered backhoes, bulldozers, compactors, cranes, excavators, graders, loader, lifts, paving machines, scrapers and a skid steer. All equipment used during the Project would have Tier 3 and Tier 4 compliant engines.

Based on the emissions calculations, Project construction activities would emit a total of approximately 310.3 MTCO₂E for the Project, which is well below the SLOAPCD GHG Bright Line threshold of 1,150 MTCO₂E. The Project construction activities would not generate GHG emissions, either directly or indirectly, that would have a significant impact on the environment. Since the Project would not exceed the Bright Line Threshold the Project would not conflict with the CAP.

Operational Phase

GHG emissions during the operational phase would primarily be generated by resident vehicle trips. Based on the emissions calculations, Project operations would emit a total of approximately 1,421 MTCO₂E per year for the Project, which slightly exceeds the SLOAPCD GHG Bright Line threshold of 1,150 MTCO₂E per year. However, based on a service population of 353 the Project would emit 4.0 MTCO₂E per service population per year, which is below the SLOAPCD Efficiency Threshold of 4.9 MTCO2E per service population per year; therefore, Project operations would not generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment. In addition, the operational emissions plus the amortized construction emissions were also estimated to be 4.0 MTCO₂E per service population per year. Since the Project would not exceed the Efficiency Threshold the Project for operational emissions or operational emission plus the amortized construction emissions the Project would not exceed the Efficiency Threshold the Project for operational emissions or operational emission plus the amortized construction emissions the Project would not conflict with the CAP, Updated Strategic Action Plan Update, or City of Paso Robles Climate Action Plan (PRCAP).

CONCLUSION

Based on the results of this analysis implementation of the Project will not result in the following:

- Conflict with applicable clean air plans;
- Violate any air quality standards or contribute substantially to an existing or projected air quality violation.
- A cumulatively considerable net increase of any criteria pollutant (including ozone precursors) for which the County is in non-attainment status under an applicable federal or state ambient air quality standard;
- Expose sensitive receptors to substantial pollutant concentrations or create objectionable odors affecting a substantial number of people.
- Generation of GHG emissions that may have a significant impact on the environment.

CLOSURE

If you have any questions or require additional information regarding the Analysis, please contact Mr. Robert Vander Weele at (805) 748-8605 or <u>rvanderweele@padreinc.com</u>.

Sincerely. Padre Associates, Inc.

Robert Vander Weele, P.G. Senior Geologist

Attachments:

References Appendix A – Emissions Model Tables

REFERENCES

Central Coast Transportation Consulting, 2022, Rolling Hills Draft Transportation Impact Study.

- County of San Luis Obispo Air Pollution Control District (SLOAPCD). 2001. 2001 Clean Air Plan. December 2001.
- _____. 2012a. CEQA Air Quality Handbook, A Guide for Assessing the Air Quality Impacts for Projects Subject to CEQA Review.
- _____. 2012b. Greenhouse Gas Thresholds and Supporting Evidence.
- _____. 2012c. 2012-2017 Strategic Action Plan Update.
 - _____. 2023. Attainment Status, Accessed on February 13, 2023 at: https://www.slocleanair.org/air-quality/about.php.
- Environ International Corporation (Environ). 2020. California Emissions Estimator Model (CalEEMod) User's Guide, Appendix D, Default Data Tables.

APPENDIX A EMISSIONS MODEL TABLES

ROLLING HILLS APARTMENT PROJECT CRITERIA POLLUTANTS & GREENHOUSE GAS EMISSIONS - REVISED TABLE 1: CONSTRUCTION EMISSIONS SUMMARY

				Peak	Day Emi	ssions, Ib	s/day						Qua	arterly Em	nissions, t	ons			Annual	Emission	s, tons/yr	
Source	NO _x	ROG	PM ₁₀	PM _{2.5}	DPM	со	SO2	N ₂ O	CH₄	CO ₂	NO _x	ROG	PM ₁₀	PM _{2.5}	DPM	со	SO ₂	Fugitive Dust	N ₂ O	CH₄	CO ₂	MTCO ₂ e
Construction Phase	87.30	4.36	5.13	3.02	5.58	101.71	0.48	5.23	4.73	48,749	0.774	0.071	0.058	0.039	0.001	1.352	0.003	0.023	0.019	0.053	335.4	310.3
Peak Day within San Luis Obispo County	91	1.7	5.13	3.02	5.58	101.71	0.48	5.23	4.73	48,749												
Emissions within San Luis Obispo County	-										0.774	0.071	0.058	0.039	0.001	1.352	0.003	0.023	0.019	0.053	335.4	310.3
SLOAPCD Significance Thresholds	1.	37			7.0						2.5	/6.3			0.13/0.32			2.25				
Threshold exceeded?	٨	lo			No						No	/No			No/No			No				
															G			iversions		28	1	
																Total	MTCO ₂ e	Per Year		31	0.3	
													SLOAP	CD MTCO	02e Per Y	ear Signi	ificance T	hreshold		1,1	150	
																Thr	eshold ex	ceeded?		Λ	lo	

Notes: - Global Warming Potentials (273 for N₂O, 27.9 for CH₄, and 1 for CO₂, Table 7.SM.6, Intergovernmental Panel on Climate Change (IPCC). 2021. Sixth Assessment Report

SLOAPCD - San Luis Obispo Air Pollution Control District

MTCO2e - Metric Tons if Carbon Dioxide Equivalent

NO_x - Oxides of Nitrogen

ROG - Reactive Organic Gases

PM_{2.5} - Particulate Matter 2.5 Microns or Less

PM₁₀ - Particulate Matter 10 Microns or Less

DPM - Diesel Particulate Matter

CO - Carbon Monoxide

SO₂ - Sulfur Dioxide

N₂O - Nitrous Oxide

CH₄ - Methane

CO₂ - Carbon Dioxide

ROLLING HILLS APARTMENT PROJECT CRITERIA POLLUTANTS & GREENHOUSE GAS EMISSIONS - REVISED TABLE 2: OPERATION EMISSIONS SUMMARY

				F	eak Day	Emission	s (Ibs/da	y)								Ann	ual Emiss	sions (tor	ıs/yr)				
Source	NO _x	ROG	PM ₁₀	PM _{2.5}	DPM	со	SO ₂	Fugitive* Dust	N ₂ O	CH₄	CO2	NO _x	ROG	PM ₁₀	PM _{2.5}	DPM	со	SO ₂	Fugitive Dust*	N ₂ O	CH₄	CO ₂	MTCO ₂ e
Operation Phase	3.50	2.45	0.27	0.27	0.55	103.73	0.07	0.000	0.50	0.36	7229	0.326	0.083	0.017	0.017	0.034	1.220	0.063	0.000	0.123	12.847	1174	1,421
Peak Day within San Luis Obispo County	5	.9	0.27	0.27	0.55	103.73	0.07	0.00	0.50	0.36	7,229	-	-	-	-		-	-		-	-	-	-
Annual Emissions within San Luis Obispo County		-										0.326	0.083	0.017	0.017	0.034	1.220	0.063	0.000	0.123	12.847	1,174	1,421
SLOAPCD Significance Thresholds	2	25	25		1.25	550						2	25	25					25				
Threshold exceeded?	٨	lo	No		No	No	-					N	lo	No					No				
																G			versions	273	28	1	
																		-	Per Year		1,4		
														SLOAP	PCD MTCC	02e Per Y			hreshold		1,1	50	
																			ceeded?			es	
																			opulation		35		
)2e Emiss						4.	-	
														Emission	ns Thresh	old Per S			Per Year		4.		
																			ceeded?			lo	
																			Per Year		6.		
													Iotal MT						struction)			27	
																			Per Year		4	-	
														Emission	ns Thresh	old Per S		-	Per Year		4.	-	
																	Ihre	esnold ex	ceeded?		N	lo	

Notes:

- Global Warming Potentials (273 for N₂O, 27.9 for CH₄, and 1 for CO₂, Table 7.SM.6, Intergovernmental Panel on Climate Change (IPCC). 2021. Sixth Assessment Report

* No significant sources of fugitive dust are expected therefore fugitive dust emissions are assumed to be negligible.

MTCO2e - Metric Tons if Carbon Dioxide Equivalent

SLOAPCD - San Luis Obispo Air Pollution Control District

NO_x - Oxides of Nitrogen

ROG - Reactive Organic Gases

 $\ensuremath{\mathsf{PM}_{2.5}}\xspace$ - Particulate Matter 2.5 Microns or Less

 $\rm PM_{10}$ - Particulate Matter 10 Microns or Less

DPM - Diesel Particulate Matter

CO - Carbon Monoxide

 SO_2 - Sulfur Dioxide

N₂O - Nitrous Oxide

CH₄ - Methane

CO₂ - Carbon Dioxide

Assumptions:

Operations assumed 7 days per week.

ROLLING HILLS APARTMENT PROJECT CRITERIA POLLUTANTS & GREENHOUSE GAS EMISSIONS - REVISED TABLE 3: Grading Phase

On-Site Sources

on-one obuices								E	mission	Factors	(g/bhp-	hr)						Emis	sions (II	o/day)							Total Er	nissions	s (tons)			
Source	BHP	Load Factor	Number	Hours/ Day*	Duration (days)	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO2	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NO _x	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂
Asphalt Fugitive			1	0	0		2.600									0.0E+00									0.0E+00							
Backhoe-1	97	37	1	8	40	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.154	475	0.165	0.038	0.005	0.005	2.342	0.003	0.003	0.097	300.8	0.003	0.001	0.000	0.000	0.047	0.000	0.000	0.002	6.015
Backhoe-2	97	38	1	8	10	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.154	475	1.781	0.078	0.125	0.125	2.405	0.003	0.003	0.100	308.9	0.009	0.000	0.001	0.001	0.012	0.000	0.000	0.001	1.544
Compressor	78	48	1	0	0	3.400	0.489	0.224	0.224	3.698	0.006	0.004	0.044	568	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Crane	231	29	1	0	0	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	473	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dozer-1	247	43	1	8	40	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.153	473	0.487	0.112	0.015	0.015	4.121	0.009	0.008	0.287	885.9	0.010	0.002	0.000	0.000	0.082	0.000	0.000	0.006	17.72
Dozer-2	247	43	1	8	10	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.153	473	0.487	0.112	0.015	0.015	4.121	0.009	0.008	0.287	885.9	0.002	0.001	0.000	0.000	0.021	0.000	0.000	0.001	4.430
Dozer-3	247	43	1	8	10	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	473	4.346	0.225	0.165	0.165	4.870	0.009	0.008	0.287	885.9	0.022	0.001	0.001	0.001	0.024	0.000	0.000	0.001	4.430
Excavator-1	158	38	1	8	30	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.153	472	0.275	0.064	0.008	0.008	3.918	0.005	0.004	0.162	500.1	0.004	0.001	0.000	0.000	0.059	0.000	0.000	0.002	7.502
Excavator-2	158	38	1	8	39	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.153	472	0.275	0.064	0.008	0.008	3.918	0.005	0.004	0.162	500.1	0.005	0.001	0.000	0.000	0.076	0.000	0.000	0.003	9.752
Forklift-1	89	20	1	0	0	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.153	472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Forklift-2	89	20	1	0	0	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Forklift-3	89	20	1	0	0	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Generator	84	74	1	0	0	3.173	0.364	0.179	0.179	3.380	0.006	0.004	0.032	568	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Grader	187	41	1	8	30	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.154	475	0.352	0.081	0.011	0.011	2.975	0.007	0.006	0.208	642.7	0.005	0.001	0.000	0.000	0.045	0.000	0.000	0.003	9.641
Loader-1	97	36	1	8	40	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.151	466	0.160	0.037	0.005	0.005	2.279	0.003	0.003	0.093	286.8	0.003	0.001	0.000	0.000	0.046	0.000	0.000	0.002	5.736
Loader-2	97	36	1	8	10	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.151	466	1.688	0.074	0.118	0.118	2.279	0.003	0.003	0.093	286.8	0.008	0.000	0.001	0.001	0.011	0.000	0.000	0.000	1.434
Paving Equipment-1	132	36	1	0	0	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.152	471	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Paving Equipment-2	132	36	1	0	0	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.152	471	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Paving Machine-1	130	42	1	0	0	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.153	473	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Paving Machine-2	130	42	1	0	0	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.153	473	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Paving Roller-1	80	38	1	0	0	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	474	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Paving Roller-2	80	38	1	0	0	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	474	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Scraper-1	367	48	1	8	30	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	472	7.208	0.373	0.273	0.273	8.078	0.016	0.013	0.475	1,467	0.108	0.006	0.004	0.004	0.121	0.000	0.000	0.007	22.01
Scraper-2	367	48	1	8	30	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	472	7.208	0.373	0.273	0.273	8.078	0.016	0.013	0.475	1,467	0.108	0.006	0.004	0.004	0.121	0.000	0.000	0.007	22.01
Water Truck-1	225	48	1	8	40	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.153	472	0.495	0.114	0.015	0.015	4.191	0.010	0.008	0.291	899.4	0.010	0.002	0.000	0.000	0.084	0.000	0.000	0.006	17.99
Welders	46	45	1	0	0	4.304	0.937	0.238	0.238	4.840	0.007	0.004	0.084	568	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		•	•		•	•	•	•			•			Total	24.93	1.745	1.038	1.038	53.57	0.099	0.083	3.018	9.317	0.299	0.023	0.012	0.012	0.749	0.001	0.001	0.042	130.2

								E	Emissio	1 Factor	s (g/mile	e)					Pe	ak Day	Emissio	ns (lb/da	ay)			
Source	Peak Round Trips/Day	Average Round Trips/Day	Number of Vehicles	Length of Round Trip (miles)	Duration (days)	NO _x	ROG	PM ₁₀	PM _{2.5}	со	SO2	N ₂ O	СН₄	CO2	NO _x	ROG	PM ₁₀	PM _{2.5}	со	SO2	N ₂ O	СН₄	CO2	1
Passenger Vehicle - LDA (offsite)	1	1	13	60	40	0.062	0.013	0.001	0.001	0.841	0.003	0.006	0.003	293	0.104	0.022	0.002	0.002	1.419	0.005	0.010	0.005	493.8	0
.ight-Duty Truck - LDT2 (offsite)	1	1	4	60	40	0.069	0.014	0.007	0.006	0.137	0.003	0.052	0.001	331	0.039	0.008	0.004	0.004	0.077	0.002	0.029	0.000	186.2	0
/led-Heavy Duty - T6 Utility (offsite)	1	1	1	60	8	0.817	0.016	0.004	0.004	0.072	0.011	0.178	0.001	1128	0.108	0.002	0.001	0.001	0.009	0.001	0.024	0.000	149.2	0
leavy Duty Haul Truck - T7T (offsite)	1	1	2	60	8	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1675	0.524	0.007	0.005	0.005	0.035	0.004	0.070	0.000	443.1	0
leavy Duty Haul Truck - T7T (offsite)	1	1	1	60	8	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1675	0.262	0.004	0.003	0.003	0.017	0.002	0.035	0.000	221.5	0
leavy Duty Haul Truck - T7T (offsite)	1	1	21	60	30	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1675	5.504	0.076	0.057	0.055	0.367	0.044	0.733	0.004	4,652	0
leavy Duty Haul Truck - T7T (offsite)	1	1	13	60	1	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1675	3.407	0.047	0.035	0.034	0.227	0.027	0.454	0.002	2,880	0
leavy Duty Haul Truck - T7T (offsite)	1	1	9	60	1	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1675	2.359	0.033	0.025	0.023	0.157	0.019	0.314	0.002	1,994	0
														Total	12.31	0.20	0.13	0.13	2.31	0.105	1.668	0.014	11,020	0

Notes:

- Hours per day and durations estimated or provided by Project Applicant.

- Round trips for supplies deliveries estimated from within the San Luis Obispo County (60-miles).

- Round trips for LDA and LDT2 is estimated from within the San Luis Obispo County 60-miles).

- Estimated trucks to transport of Rental Equipment from within San Luis Obispo County, 60 mile round trip.

-Round trips to transport waste estimated from within the San Luis Obispo (60-miles)

* asphalt in acres.

IS/MND Attachment 4

			Total Er	nissions	s (tons)			
NO _x	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	СН₄	CO2
0.002	0.000	0.000	0.000	0.028	0.000	0.000	0.000	9.875
0.001	0.000	0.000	0.000	0.002	0.000	0.001	0.000	3.724
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.597
0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.772
0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.886
0.083	0.001	0.001	0.001	0.005	0.001	0.011	0.000	69.787
0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.440
0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.997
0.092	0.002	0.001	0.001	0.036	0.001	0.013	0.000	89.08

ROLLING HILLS APARTMENT PROJECT CRITERIA POLLUTANTS & GREENHOUSE GAS EMISSIONS - REVISED TABLE 4: Building Construction and Paving Phase

On-Site Sources

On-Site Sources								E	mission	Factors	(g/bhp-	hr)						Emis	sions (It	o/day)							Total Er	nissions	(tons)			-
Source	BHP	Load Factor	Number	Hours/ Day*	Duration (days)	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO2
Asphalt Fugitive			1	0.145	15		2.600									8.3E-06									6.2E-08							
Backhoe-1	97	37	1	8	333	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.154	475	0.165	0.038	0.005	0.005	2.342	0.003	0.003	0.097	300.8	0.027	0.006	0.001	0.001	0.390	0.001	0.000	0.016	50.08
Backhoe-2	97	38	1	0	0	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.154	475	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Compressor	78	48	1	6	333	3.400	0.489	0.224	0.224	3.698	0.006	0.004	0.044	568	1.684	0.242	0.111	0.111	1.831	0.003	0.002	0.022	281.4	0.280	0.040	0.018	0.018	0.305	0.000	0.000	0.004	46.86
Crane	231	29	1	7	333	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	473	2.398	0.124	0.091	0.091	2.688	0.005	0.004	0.158	488.9	0.399	0.021	0.015	0.015	0.448	0.001	0.001	0.026	81.41
Dozer-1	247	43	1	0	0	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.153	473	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dozer-2	247	43	1	0	0	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.153	473	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dozer-3	247	43	1	0	0	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	473	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Excavator-1	158	38	1	0	0	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.153	472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Excavator-2	158	38	1	0	0	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.153	472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Forklift-1	89	20	1	8	333	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.153	472	0.082	0.019	0.003	0.003	1.162	0.002	0.001	0.048	148.0	0.014	0.003	0.000	0.000	0.193	0.000	0.000	0.008	24.65
Forklift-2	89	20	1	8	333	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	472	0.860	0.038	0.060	0.060	1.162	0.002	0.001	0.048	148.0	0.143	0.006	0.010	0.010	0.193	0.000	0.000	0.008	24.65
Forklift-3	89	20	1	8	333	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	472	0.860	0.038	0.060	0.060	1.162	0.002	0.001	0.048	148.0	0.143	0.006	0.010	0.010	0.193	0.000	0.000	0.008	24.65
Generator	84	74	1	8	333	3.173	0.364	0.179	0.179	3.380	0.006	0.004	0.032	568	3.479	0.399	0.196	0.196	3.706	0.007	0.005	0.035	623.0	0.579	0.066	0.033	0.033	0.617	0.001	0.001	0.006	103.7
Grader	187	41	1	0	0	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.154	475	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Loader-1	97	36	1	8	333	0.260	0.060	0.008	0.008	3.700	0.005	0.004	0.151	466	0.160	0.037	0.005	0.005	2.279	0.003	0.003	0.093	286.8	0.027	0.006	0.001	0.001	0.379	0.001	0.000	0.015	47.75
Loader-2	97	36	1	8	333	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.151	466	1.688	0.074	0.118	0.118	2.279	0.003	0.003	0.093	286.8	0.281	0.012	0.020	0.020	0.379	0.001	0.000	0.015	47.75
Paving Equipment-1	132	36	1	8	15	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.152	471	1.944	0.101	0.094	0.094	3.101	0.004	0.004	0.127	394.5	0.015	0.001	0.001	0.001	0.023	0.000	0.000	0.001	2.959
Paving Equipment-2	132	36	1	8	15	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.152	471	1.944	0.101	0.094	0.094	3.101	0.004	0.004	0.127	394.5	0.015	0.001	0.001	0.001	0.023	0.000	0.000	0.001	2.959
Paving Machine-1	130	42	1	8	15	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.153	473	2.234	0.116	0.108	0.108	3.563	0.005	0.004	0.147	455.3	0.017	0.001	0.001	0.001	0.027	0.000	0.000	0.001	3.415
Paving Machine-2	130	42	1	8	15	2.320	0.120	0.112	0.112	3.700	0.005	0.004	0.153	473	2.234	0.116	0.108	0.108	3.563	0.005	0.004	0.147	455.3	0.017	0.001	0.001	0.001	0.027	0.000	0.000	0.001	3.415
Paving Roller-1	80	38	1	8	15	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	474	1.469	0.064	0.103	0.103	1.984	0.003	0.002	0.082	254.1	0.011	0.000	0.001	0.001	0.015	0.000	0.000	0.001	1.905
Paving Roller-2	80	38	1	8	15	2.740	0.120	0.192	0.192	3.700	0.005	0.004	0.153	474	1.469	0.064	0.103	0.103	1.984	0.003	0.002	0.082	254.1	0.011	0.000	0.001	0.001	0.015	0.000	0.000	0.001	1.905
Scraper-1	367	48	1	0	0	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Scraper-2	367	48	1	0	0	2.320	0.120	0.088	0.088	2.600	0.005	0.004	0.153	472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Water Truck-1	225	48	1	8	333	0.260	0.060	0.008	0.008	2.200	0.005	0.004	0.153	472	0.495	0.114	0.015	0.015	4.191	0.010	0.008	0.291	899.4	0.082	0.019	0.003	0.003	0.698	0.002	0.001	0.049	149.7
Welders	46	45	1	8	333	4.304	0.937	0.238	0.238	4.840	0.007	0.004	0.084	568	1.571	0.342	0.087	0.087	1.767	0.003	0.002	0.031	207.5	0.262	0.057	0.014	0.014	0.294	0.000	0.000	0.005	34.54
	·	•	•		•	•	•	•			•			Total	24.737	2.026	1.361	1.361	41.86	0.064	0.052	1.678	6.026	2.323	0.248	0.130	0.130	4.220	0.007	0.006	0.166	652.4

On-Road Sources

								E	Emissio	n Factor	s (g/mile)					Pe	eak Day	Emissio	ns (lb/da	ıy)						Total En	nissions	(tons)			
Source	Peak Round Trips/Day	Average Round Trips/Day	Number of Vehicles	Length of Round Trip (miles)	Duration (days)	NO _x	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NO _x	ROG	PM ₁₀	PM _{2.5}	со	SO2	N₂O	CH₄	CO2	NO _x	ROG	PM ₁₀	PM _{2.5}	со	SO2	N ₂ O	СН₄	CO2
Passenger Vehicle - LDA (offsite)	1	1	20	60	333	0.062	0.013	0.001	0.001	0.841	0.003	0.006	0.003	293	0.160	0.034	0.004	0.003	2.170	0.007	0.015	0.008	755.2	0.027	0.006	0.001	0.001	0.361	0.001	0.003	0.001	125.7
ight-Duty Truck - LDT2 (offsite)	1	1	7	60	333	0.069	0.014	0.007	0.006	0.137	0.003	0.052	0.001	331	0.059	0.012	0.006	0.006	0.117	0.003	0.045	0.001	284.8	0.010	0.002	0.001	0.001	0.020	0.000	0.007	0.000	47.42
Aed-Heavy Duty - T6 Utility (offsite)	1	1	2	60	67	0.817	0.016	0.004	0.004	0.072	0.011	0.178	0.001	1,128	0.216	0.004	0.001	0.001	0.019	0.003	0.047	0.000	298.3	0.007	0.000	0.000	0.000	0.001	0.000	0.002	0.000	9.935
leavy Duty Haul Truck - T7T (offsite)	1	1	5	60	333	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1,675	1.310	0.018	0.014	0.013	0.087	0.010	0.175	0.001	1,108	0.218	0.003	0.002	0.002	0.015	0.002	0.029	0.000	184.4
leavy Duty Haul Truck - T7T (offsite)	1	1	35	60	15	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1,675	9.173	0.127	0.095	0.091	0.61	0.073	1.222	0.006	7,754	0.069	0.001	0.001	0.001	0.005	0.001	0.009	0.000	58.16
leavy Duty Haul Truck - T7T (offsite)	1	1	20	60	15	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1,675	5.242	0.073	0.054	0.052	0.35	0.042	0.698	0.003	4,431	0.039	0.001	0.000	0.000	0.003	0.000	0.005	0.000	33.23
leavy Duty Haul Truck - T7T (offsite)	1	1	1	60	67	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1,675	0.262	0.004	0.003	0.003	0.017	0.002	0.035	0.000	222	0.009	0.000	0.000	0.000	0.001	0.000	0.001	0.000	7.378
leavy Duty Haul Truck - T7T (offsite)	1	1	15	60	1	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1,675	3.931	0.054	0.041	0.039	0.262	0.031	0.524	0.003	3,323	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.662
leavy Duty Haul Truck - T7T (offsite)	1	1	19	60	1	1.981	0.027	0.021	0.020	0.132	0.016	0.264	0.001	1,675	4.980	0.069	0.052	0.050	0.332	0.040	0.663	0.003	4,209	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.105
														Total	25.33	0.40	0.27	0.26	3.96	0.212	3.423	0.025	22,385	0.383	0.013	0.005	0.005	0.404	0.005	0.057	0.002	470.1

Notes:

- Hours per day and durations estimated or provided by Project Applicant.

- Round trips for supplies deliveries estimated from within the San Luis Obispo County (60-miles).

- Round trips for LDA and LDT2 is estimated from within the San Luis Obispo County 60-miles).

- Estimated trucks to transport of Rental Equipment from within San Luis Obispo County, 60 mile round trip.

-Round trips to transport waste estimated from within the San Luis Obispo (60-miles)

* asphalt in acres.

17.2

ROLLING HILLS APARTMENT PROJECT CRITERIA POLLUTANTS & GREENHOUSE GAS EMISSIONS - REVISED TABLE 5: Construction Phase / Operation Phase - Fugitive Dust Emissions

Grading

			Number of		Emission Factor,	Peak Day Emis	sions (lbs/day)	Total Emiss	sions (tons)
Activity	Source	Source Units	Days	Emission Factor	Units	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
Site Grading	4.0	acres/day	40	0.429	lbs PM10/day/acre	1.716	0.156	0.034	0.003
Truck Loading & Dumping (Grading Phase)	477	tons/day	40	1.72E-04	lbs/ton	0.082	0.012	0.002	0.000
Vehicle Miles Off-Road	2	vehicle-miles/day	40	1.17	lbs/vehicle-mile	2.331	0.233	0.047	0.005
					Max/Total	2.331	0.233	0.083	0.008

0.90 for watering by hand and covering (SCAQMD)

0.55 for watering 3X per day (SCAQMD), 0.80 for soil binders applied monthly (AP-42)

Fugitive Dust Emissions: Inputs for the Table

Emission factors based on following inputs		
Mean number of rain days per year	0	worst case
Silt content of soil, fill storage pile, %	1.5	SCAQMD default value
Roadway inputs (paved and unpaved, as per URBEMIS)		
Roads mean vehicle weight, tons	20.61	based on project description, HHDT + LDT and vehicles weight (average of full and empty)
unpaved dirt road silt content, %	8.4	AP-42 construction sites
Truck Loading inputs		
k, particle size multiplier, default=0.35 fpr pm10	0.35	
U, mean wind speed, mph range 1.3-15	8.15	
<i>M, moisture content, default=12%</i>	12	
PM2.5/PM10 ratio truck loading	0.15	
Site grading emissions from CalEEMod for grading	0.091	ratio of PM2.5/PM10 CalEEMod
Demolition materials, tons/yds3	1.000	estimated for concrete debris
Fill materials, tons/yds3	1.000	estimated for soils
Mitigation: demolition area watering (fraction reduction)	0.61	0.61 for watering every 3 hours (SCAQMD)
Mitigation: grading/dist area watering (fraction reduction)	0.61	0.61 for watering every 3 hours (SCAQMD)
Mitigation: dumping soil moisture (fraction reduction)	0.69	0.69 for minimum 12% soil moisture (SCAQMD)

Notes:

PM2.5/PM10 ratio as per AP-42 k factor for PM10 and PM2.5

Demolition dust calculations as per EPA AP-42 11.19 and 13.2.4

Truck loading dumping cut/fill based on CalEEMod

Mitigation: storage piles (fraction reduction)

Mitigation: roads (fraction reduction)

Storage pile emissions based on SCAQMD Handbook (URBEMIS does not address emissions from storage piles)

Paved and unpaved road dust emissions based on AP-42 2006 (unpaved) Chapt 13. EPA AP-42 2006 is the same as URBEMS and CalEEMod One month assumes 22 days of activity, as per URBEMIS

0.90

0.55

ROLLING HILLS APARTMENT PROJECT CRITERIA POLLUTANTS & GREENHOUSE GAS EMISSIONS - REVISED TABLE 6: Operations

Landscaping Equipment Sources

									Emissior	Factors (g	/bhp-hr)							Emi	issions (Ib	/day)							Total	Emissions	s (tons)			
Source	BHP	Load Factor	Number	Hours/ Day	Duration (days)	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO2	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO2	N ₂ O	CH₄	CO2	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO2
Ridding Lawn Mower	25	33	1	4	26	5.430	7.641	0.370	0.370	543.131	0.021	0.004	0.429	858.879	0.395	0.556	0.027	0.027	39.51	0.002	0.000	0.031	62.48	0.005	0.007	0.000	0.000	0.514	0.000	0.000	0.000	0.812
Trimmer	5	91	1	3	26	8.589	19.581	0.338	0.338	380.309	0.029	0.004	1.101	858.879	0.258	0.589	0.010	0.010	11.44	0.001	0.000	0.033	25.85	0.003	0.008	0.000	0.000	0.149	0.000	0.000	0.000	0.336
Leaf Blower	5	94	2	4	26	2.987	12.022	1.861	1.861	480.736	0.029	0.004	0.676	858.880	0.248	0.997	0.154	0.154	39.85	0.002	0.000	0.056	71.20	0.003	0.013	0.002	0.002	0.518	0.000	0.000	0.001	0.926
														Total	0.901	2.142	0.191	0.191	90.8	0.005	0.001	0.120	159.5	0.012	0.028	0.002	0.002	1.181	0.0001	0.000	0.002	2.074

On-Road Sources

									Emissio	n Factors (g/mile)							Peak Dag	y Emissio	ns (lb/day)							Total	Emissions	(tons)			
Source	Peak Round Trips/Day	Average Round Trips/Day	Number of Vehicles	Length of Round Trip (miles)	Duration (days)	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO2	N ₂ O	CH₄	CO2	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N₂O	CH₄	CO2	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO2	N₂O	CH₄	CO2
Passenger Vehicle - LDA (offsite)	1	1	653	10	365	0.062	0.013	0.001	0.001	0.841	0.003	0.006	0.003	293	0.891	0.190	0.020	0.018	12.10	0.042	0.085	0.0467	4,212	0.163	0.035	0.004	0.003	2.209	0.008	0.016	0.009	768.6
Light-Duty Truck - LDT2 (offsite)	1	1	218	10	365	0.069	0.014	0.007	0.006	0.137	0.003	0.052	0.001	331	0.329	0.069	0.032	0.031	0.655	0.015	0.250	0.0032	1,588	0.060	0.013	0.006	0.006	0.120	0.003	0.046	0.001	289.9
Med-Heavy Duty - T6 Utility (offsite)	1	1	2	10	26	0.817	0.016	0.004	0.004	0.072	0.011	0.178	0.001	1,128	0.036	0.001	0.000	0.000	0.003	0.000	0.008	0.0000	49.7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.646
Heavy Duty Trucks - T7TC (offsite)	1	1	2	22	52	10.10	0.015	0.015	0.014	0.041	0.039	0.649	0.001	4,121	0.979	0.001	0.001	0.001	0.004	0.004	0.063	0.0001	399.8	0.025	0.000	0.000	0.000	0.000	0.000	0.002	0.000	10.39
														Total	2.235	0.261	0.054	0.051	12.76	0.061	0.406	0.0500	6,249.4	0.249	0.047	0.010	0.009	2.328	0.010	0.063	0.009	1,069.5

Land Use Sources

Electricity Use	Electricity Use						or	Emissions (Ib/kWh/day)			Emissions (metric tons/kWh/yr)		
Source	Units or Sq Feet	Electricity Use kW/units/yr	Electricity Lighting Use kW/units/yr	Electricity Water Use kW/yr	N ₂ O	CH₄	CO2	N₂O	CH₄	CO2	N ₂ O	CH₄	CO2
Residential Areas	135	295.03	810.36	8.695	0.000004	0.00003	0.5279	0.0016	0.0135	215.8	0.0003	0.0025	39.39
Clubhouse	2,804	5.31	5.51	0.549	0.000004	0.00003	0.5279	0.0003	0.0027	43.89	0.0001	0.0005	8.010
Pool	1,184	0.000	0.000	0.068	0.000004	0.00003	0.5279	0.0000	0.0000	0.013	0.0000	0.0000	0.002
Parking Lot	43,092	0.000	0.880	0.000	0.000004	0.00003	0.5279	0.0004	0.0034	54.86	0.0001	0.0006	10.01
Exterior Lighting	6,908	0.000	0.880	0.000	0.000004	0.00003	0.5279	0.0001	0.0006	8.805	0.0000	0.0001	1.607
							Total	0.00245	0.02022	323.4	0.00045	0.00369	59.0

Notes: - Equipment, number of personnel, hours and days of operation were estimated. - Square footage and number of units provided by client - Occupancy rate of approximately 100% used - Round trips for LDA and LDT2 were estimated.

Natural Gas

Emission Factors, g/kBTU					Emissions (lb/day)					Total Emissions (tons)						Total Emissions (metric tons)													
Source	kBtu/Unit or SF	Units or SF	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH ₄	CO ₂	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂
Natural Gas Residential	10,164	135	0.042	0.005	0.003	0.003	0.018	0.000	0.001	0.001	53	0.346	0.041	0.028	0.028	0.147	0.002	0.008	0.008	442.3	0.063	0.007	0.005	0.005	0.027	0.000	0.057	0.007	0.005
Natural Gas NonResidential	20	2,804	0.044	0.005	0.003	0.003	0.037	0.000	0.001	0.001	53	0.015	0.002	0.001	0.001	0.013	0.000	0.000	0.000	18.08	0.003	0.000	0.000	0.000	0.002	0.000	0.002	0.000	0.000
											Total	0.362	0.042	0.029	0.029	0.160	0.002	0.008	0.009	460.3	0.066	0.008	0.005	0.005	0.029	0.000	0.060	0.007	0.005

Wastewater Treatment	Emis	Emission Factor (Ib/gal) Emissions (pound/day)					Emissions (metric tons/year)			
Source	Wastewater Generated (gallons/yr)	N ₂ O	CH₄	CO2	N ₂ O	CH₄	CO2	N ₂ O	CH₄	CO2
Project Site	15,359,293	0.0000019	0.0000030	0.00086	0.079	0.125	36.18	0.00004	0.00006	0.01809
Total					0.079	0.125	36.18	0.00004	0.00006	0.01809

Solid Waste		Emissions (pound/day)				sions 'year)	
Source	Solid Waste Generated (tons/yr/unit)	CH₄	CO2	CH₄	CO2	CH₄	CO2
Residential Unit	301.3	0.04257	0.14307	0.0387	0.1302	12.83	43.11
			Total	0.0387	0.1302	12.83	43.11

ROLLING HILLS APARTMENT PROJECT CRITERIA POLLUTANTS & GREENHOUSE GAS EMISSIONS - REVISED TABLE 7: Emission Factors and Assumptions Onalta Canatavatia

Onsite Construction							Emission	Factors (g/	bhp-hr)	hp-hr) Emission Factors (lb/bhp-hr)											
Source	Tier	Operational Horsepower	Load Factor	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂
Asphalt Fugitive	EF = lb/acre				2.600									0.0057	-		-			-	
Backhoe-1	4	97	37	0.260	0.060	0.008	0.008	3.700	0.005	0.0042	0.154	475	0.0006	0.0001	0.0000	0.0000	0.0082	0.00001	0.00001	0.00034	1.0475
Backhoe-2	3	97	38	2.740	0.120	0.192	0.192	3.700	0.005	0.0042	0.154	475	0.0060	0.0003	0.0004	0.0004	0.0082	0.00001	0.00001	0.00034	1.0475
Compressor		78	48	3.400	0.489	0.224	0.224	3.698	0.006	0.0042	0.044	568	0.0075	0.0011	0.0005	0.0005	0.0082	0.00001	0.00001	0.00010	1.2529
Crane	3	231	29	2.320	0.120	0.088	0.088	2.600	0.005	0.0042	0.153	473	0.0051	0.0003	0.0002	0.0002	0.0057	0.00001	0.00001	0.00034	1.0427
Dozer-1	4	247	43	0.260	0.060	0.008	0.008	2.200	0.005	0.0042	0.153	473	0.0006	0.0001	0.0000	0.0000	0.0049	0.00001	0.00001	0.00034	1.0427
Dozer-2	4	247	43	0.260	0.060	0.008	0.008	2.200	0.005	0.0042	0.153	473	0.0006	0.0001	0.0000	0.0000	0.0049	0.00001	0.00001	0.00034	1.0427
Dozer-3	3	247	43	2.320	0.120	0.088	0.088	2.600	0.005	0.0042	0.153	473	0.0051	0.0003	0.0002	0.0002	0.0057	0.00001	0.00001	0.00034	1.0427
Excavator-1	4	158	38	0.260	0.060	0.008	0.008	3.700	0.005	0.0042	0.153	472	0.0006	0.0001	0.0000	0.0000	0.0082	0.00001	0.00001	0.00034	1.0412
Excavator-2	4	158	38	0.260	0.060	0.008	0.008	3.700	0.005	0.0042	0.153	472	0.0006	0.0001	0.0000	0.0000	0.0082	0.00001	0.00001	0.00034	1.0412
Forklift-1	4	89	20	0.260	0.060	0.008	0.008	3.700	0.005	0.0042	0.153	472	0.0006	0.0001	0.0000	0.0000	0.0082	0.00001	0.00001	0.00034	1.0395
Forklift-2	3	89	20	2.740	0.120	0.192	0.192	3.700	0.005	0.0042	0.153	472	0.0060	0.0003	0.0004	0.0004	0.0082	0.00001	0.00001	0.00034	1.0395
Forklift-3	3	89	20	2.740	0.120	0.192	0.192	3.700	0.005	0.0042	0.153	472	0.0060	0.0003	0.0004	0.0004	0.0082	0.00001	0.00001	0.00034	1.0395
Generator		84	74	3.173	0.364	0.179	0.179	3.380	0.006	0.0042	0.032	568	0.0070	0.0008	0.0004	0.0004	0.0075	0.00001	0.00001	0.00007	1.2529
Grader	4	187	41	0.260	0.060	0.008	0.008	2.200	0.005	0.0042	0.154	475	0.0006	0.0001	0.0000	0.0000	0.0049	0.00001	0.00001	0.00034	1.0479
Loader-1	4	97	36	0.260	0.060	0.008	0.008	3.700	0.005	0.0042	0.151	466	0.0006	0.0001	0.0000	0.0000	0.0082	0.00001	0.00001	0.00033	1.0266
Loader-2	3	97	36	2.740	0.120	0.192	0.192	3.700	0.005	0.0042	0.151	466	0.0060	0.0003	0.0004	0.0004	0.0082	0.00001	0.00001	0.00033	1.0266
Paving Equipment-1	3	132	36	2.320	0.120	0.112	0.112	3.700	0.005	0.0042	0.152	471	0.0051	0.0003	0.0002	0.0002	0.0082	0.00001	0.00001	0.00034	1.0378
Paving Equipment-2	3	132	36	2.320	0.120	0.112	0.112	3.700	0.005	0.0042	0.152	471	0.0051	0.0003	0.0002	0.0002	0.0082	0.00001	0.00001	0.00034	1.0378
Paving Machine-1	3	130	42	2.320	0.120	0.112	0.112	3.700	0.005	0.0042	0.153	473	0.0051	0.0003	0.0002	0.0002	0.0082	0.00001	0.00001	0.00034	1.0423
Paving Machine-2	3	130	42	2.320	0.120	0.112	0.112	3.700	0.005	0.0042	0.153	473	0.0051	0.0003	0.0002		0.0082	0.00001			1.0423
Paving Roller-1	3	80	38	2.740	0.120	0.192	0.192	3.700	0.005	0.0042	0.153	474	0.0060	0.0003	0.0004	0.0004	0.0082	0.00001	0.00001	0.00034	1.0447
Paving Roller-2	3	80	38	2.740	0.120	0.192	0.192	3.700	0.005	0.0042	0.153	474	0.0060	0.0003	0.0004	0.0004	0.0082	0.00001	0.00001	0.00034	1.0447
Scraper-1	3	367	48	2.320	0.120	0.088	0.088	2.600	0.005	0.0042	0.153	472	0.0051	0.0003	0.0002	0.0002	0.0057	0.00001	0.00001	0.00034	1.0410
Scraper-2	3	367	48	2.320	0.120	0.088	0.088	2.600	0.005	0.0042	0.153	472	0.0051	0.0003	0.0002	0.0002	0.0057	0.00001	0.00001	0.00034	1.0410
Water Truck-1	4	225	48	0.260	0.060	0.008	0.008	2.200	0.005	0.0042	0.153	472	0.0006	0.0001	0.0000	0.0000	0.0049	0.00001	0.00001	0.00034	1.0410
Welders		46	45	4.304	0.937	0.238	0.238	4.840	0.007	0.0042	0.084	568.3	0.0095	0.0021	0.0005	0.0005	0.0107	0.00002	0.00001	0.00019	1.2529
Onsite Construction							Emission	Factors (g/	bhp-hr)							0.0002 0.0082 0.0001 0.0001 0.00034 1 0.0004 0.0082 0.0001 0.0001 0.00034 1 0.0004 0.0082 0.00001 0.00001 0.00034 1 0.0002 0.0057 0.00001 0.00001 0.00034 1 0.0002 0.0057 0.00001 0.00001 0.00034 1 0.0000 0.0049 0.00001 0.00001 0.00034 1 0.0005 0.0107 0.00001 0.00001 0.00034 1 0.0005 0.0107 0.00001 0.00014 0.00034 1 0.0005 0.0107 0.00002 0.00011 0.00034 1 0.0005 0.0107 0.00002 0.00011 0.00034 1 0.0005 0.0107 0.00002 0.00001 0.00034 1 0.0005 SO2 N2O CH4 1 0.0007 0.8384 0.00006 0.00001 0.00243 1					
Source	Tier	Operational Horsepower	Load Factor	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO2	NOx	ROG	PM10	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO2
Ridding Lawn Mower		25	33	5.430	7.641	0.370	0.370	543	0.021	0.0042	0.429	859	0.0120	0.0168	0.0008	0.0008	1.1974	0.00005	0.00001	0.00095	1.8935
Trimmer		5	91	8.589	19.581	0.338	0.338	380	0.029	0.0042	1.101	859	0.0189	0.0432	0.0007	0.0007	0.8384	0.00006	0.00001	0.00243	1.8935
Leaf Blower		5	94	2.987	12.022	1.861	1.861	481	0.029	0.0042	0.676	859	0.0066	0.0265	0.0041	0.0041	1.0598	0.00006	0.00001	0.00149	1.8935
Onsite					1		Emissio	n Factors, g	/kBTU							Emissio	n Factors (b/kBTU)			
Source	Tier	Operational Horsepower	Load Factor	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂
Natural Gas Residential				0.041802	0.004892	0.003380	0.003380	0.017788	0.000267	0.000978	0.001023	53.363808	0.000092	0.000011	0.000007	0.000007	0.000039	0.000001	0.000002	0.000002	0.117647
Natural Gas NonResidential				0.044470	0.004892	0.003380	0.003380	0.037355	0.000267	0.000978	0.001023	53.363808	0.000098	0.000011	0.000007	0.000007	0.000082	0.000001	0.000002	0.000002	0.117647
Offsite							Emissio	n Factors (g	/mile)							Emissi	on Factors	(lb/mile)			
Source	Tier	Regio	n	NOx	ROG	PM ₁₀	PM _{2.5}	со	SO ₂	N ₂ O	CH₄	CO ₂	NOx	ROG	PM ₁₀	PM _{2.5}	CO	SO ₂	N₂O	CH₄	CO ₂
Passenger Vehicle - LDA (offsite)		SLO Co	unty	0.0619	0.0132	0.0014	0.0013	0.8413	0.0029	0.0059	0.0032	293	0.0001	0.0000	0.0000	0.0000	0.0019	0.00001	0.00001	0.00001	0.6455
Light-Duty Truck - LDT2 (offsite)		SLO Co	unty	0.0687	0.0144	0.0068	0.0065	0.1367	0.0031	0.0522	0.0007	331	0.0002	0.0000	0.0000	0.0000	0.0003	0.00001	0.00012	0.00000	0.7303
Med-Heavy Duty - T6 Utility (offsite)		SLO Co	unty	0.8171	0.0159	0.0043	0.0041	0.0716	0.0107	0.1777	0.0007	1128	0.0018	0.0000	0.0000	0.0000	0.0002	0.00002	0.00039	0.00000	2.4862
Heavy Duty Haul Truck - T7T (offsite)		SLO Co	unty	1.9814	0.0274	0.0206	0.0197	0.1320	0.0159	0.2639	0.0013	1675	0.0044	0.0001	0001 0.0000 0.0000 0.0003 0.0003 0.00058 0.00000 3.692				3.6925		
Heavy Duty Trucks - T7TC (offsite)		SLO Co	unty	10.0957	0.0149	0.0150	0.0144	0.0414	0.0390	0.6493	0.0007	4121	0.0223	0.0000	0.0000 0.0000 0.0000 0.0001 0.0009 0.00143 0.00000 9.0				9.0859		
Electricity Emission Factors Emission Factor				on Factors (It	o/kWhr)	1				Recyclin	ng and Cor	nposting		1							
Source Electricity Use Region N ₂ O CH ₄					CO ₂	1						Percen	tage of								
				0.00003	0.5279	1			Recvclin	ng and Con	npostina	Waste Re									

Electricity Emission Factors	Emission Factors (lb/kWhr)					
Source	Electricity Use Region	N ₂ O	CH4	CO ₂		
Electricity Usage	California	0.000004	0.00003	0.5279		

k/M/hz/Linit not SOE)

Electricity Use by Land Use

	Kwmi/Om	(per SQF)
Source	Electricity 295 5.31 0.00 0.00 0.00	Lighting Electricity
Residential Areas	295	810
Clubhouse	5.31	5.51
Pool	0.00	0.00
Parking Lot	0.00	0.88
Exterior Lighting	0.00	0.88

Natural Gas Use by Land Use

Source	kBtu/Unit
Residential Natural Gas Use	8,907

Solid Waste Disposal Rate

Source	Region	Rate (tons/yr)
Residential Unit	Statewide	2.2

Solid	l Waste	Emissions	Factors

Landfill Type	CH₄ (tons/ton)	CO ₂ (tons/ton)
No Landfill Gas Collection	0.042565854	0.143068564

Water Use Rates					Water Use	
Source	Units or Square Feet	Indoor Water Use (gal/unit or gal/Square Feet per yr)	Outdoor Water Use (gal/unit or gal/Square Feet per yr)	Total Indoor Water Use (gal)	Total Outdoor Water Use (gal)	Total Water Use (gal)
Low Rise Apartments	135	65,154	41,075	8,795,790	5,545,125	14,340,915
Clubhouse	2,804	304	19	851,109	54,325	905,434
Pool	1,184	59	36	70,025	42,919	112,944
			Total	9,716,925	5,642,369	15,359,293
M	Emia	sion Foster (lk/sol)		1		

Wastewater Treatment	Emis	Emission Factor (lb/gal)			
Source	N ₂ O	CH ₄	CO2		
Project Site	0.0000019	0.000003	0.00086		
Climate Zone	4				

Notes: - Equipment list and engine sizes estimated. - Equipment criteria pollutant emission factors and load factors were obtained from CalEEMod, Appendix D 2021.

Program

- Landscape equipment load factors obtained from Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling, 2010, EPA - Electricity and Natural Gas Emission Factors were obtained from CalEEMod, Appendix D 2021.

- Electricity Use by Land Use obtained from CalEEMod, Appendix D 2021.

- N₂O emission factors for equipment were obtained from CFR Part 98 Table C-2 and CalEEMod Appendix D- 20164. Kg/mmbtu was converted to kg/bhp-hr using a diesel energy density of 7000 btu/hp-hr. - CO₂ and CH₄ emission factors for construction equipment were obtained from CalEEMod Appendix D 2021.

0

- Vehicle emissions factors obtained from EMFAC-2021

- Solid waste and waste water emission factors and waste disposal rates obtained from CalEEMod Appendix D 2021

- Water use rates and wastewater treatment rates obtained from CalEEMod Appendix D 2021

- Waste disposal rates obtained from CalRecycle's estimated solid waste generation rates

1343 Bishop Street, San Luis Obispo, CA 93401 Tel: 805 234 8760 Email: rodney@heritagetreeconsulting.com

November 2, 2022

To: Kim Berry – Red Tail Acquisitions, LLC – TK Consulting, Inc. 2082 Michelson Drive 3rd Floor Irvine, CA 92612

From: Rodney Thurman - Heritage Tree Arboricultural Consulting

Re: Update of Oak Tree Impact & Tree Protection Report for Rolling Hills Apartments located at the northwest corner of Creston Road and Rolling Hills Road in, Paso Robles, CA.

Ms. Berry,

In response to your request for an updated Oak Tree Impact & Tree Protection Report regarding your revised site plans to construct a multi-family housing complex at 709 Rolling Hills Road, I have produced the following report. The previous Oak Tree Impact & Tree Protection Reports I provided to you on February 10th 2022 and May 10th 2022, shall no longer be referenced.

Assignment

Produce written oak tree impact and tree protection report based on International Society of Arboriculture best management practices for tree protection during construction and City of Paso Robles Oak Tree Ordinance 835 N.S.

Report to include:

- $\circ\bar{A}$ Inventory of all oak trees with diameters of 6 inches or greater
- $\circ \bar{A}$ Condition assessment of all inventoried native oaks
- oĀ Critical root zone calculations
- $\circ \bar{A}$ Tree protection zone calculations
- $\circ \bar{A}$ Tree impact assessment
- $\odot\bar{A}$ Tree protection requirements and standards
- $\circ \bar{A}$ Site maps with tree locations
- $\circ \bar{A}$ Photographs

Summary

The proposed project is for the construction of a multi-family apartment complex. I have proposed the removal of 1 native oak tree due to road construction and underground utility impacts in addition to if being in poor condition. I recommended two native oaks to be retained and protected.

Tree replacements will be required for all native oak trees removed that are six (6) inch diameter and larger.

For this project, eight (8) native oak trees at 1.5-inch caliper, twenty-four-inch box size or six (6) native oaks at 2-inch caliper, twenty-four-inch box size, will be required to be planted if the recommended oak tree removal is approved.

An International Society of Arboriculture Certified Arborist shall observe and approve all construction activities proposed in or within 5 feet of the critical root zone (CRZ) of any native oak tree being retained. Any work outside the CRZ will not require arborist oversite.

A pre-construction meeting shall be held with the project arborist and all parties involved in the project. All tree protection fencing, and tree protection measures shall be in place before any construction activity begins.

Introduction

The property is a combination of several adjacent lots where single-family homes formerly stood. The land has many of its original contours and will need to be graded, filled and compacted in order to build on the site.

Per the City of Paso Robles Oak Preservation Ordinance, all native oak trees 6-inches in diameter and greater, that will have construction impacts in the CRZ or within 5 feet of the CRZ must be inventoried. The native oak trees shall be retained and protected if possible. The majority of the trees on site were non-native species that were part of a former landscape or were volunteer seedlings. There were 3 native California oaks with diameters 6-inches or greater, growing on the site. Two were valley oak (*Quercus lobata*) and 1 was a coast live oak (*Quercus agrifolia*). See Appendix A - Tree Inventory and Tree Protection. See also Appendix B - Site Maps - Map 1- Tree Inventory.

Methodology

Tree Diameter Measurements

Diameter at Standard Height (DSH) was measured at 4.5' above ground. For multi-stem trees that divided below 4.5', I measured below the division at the narrowest point on the trunk. If it was not possible to measure below the division, I measured each stem individually, then squared the diameter of each stem. Finally, I summed the squared diameters and took the square root of the sum to get the diameter of the tree.

Critical Root Zone Measurements

CRZ's were determined by giving a radius of 1-foot per every inch of tree diameter. E.g., a 12-inch diameter tree would have a 12-foot CRZ radius measured from the outside of the trunk.

Tree Protection Zone Measurements

Generally, tree protection zone (TPZ) distances follow the distances listed for CRZs. The exception is if there are proposed tree-root encroachments into the CRZ of 25% or less. In most cases encroachments of less than 25% can be allowed unless the structure or health of the tree would be compromised.

Tree Condition Ratings

All trees in the inventory were given a condition rating. The rating was based on the health, structure and presence of disease and insects. See the following definitions:

- •Ā **Dead** = Severely declining or no foliage, large dead branches, decay cavities, loss of bark, roots decayed or dead.
- A Very Poor = Evidence of multiple large past failures, advanced disease, uncontrollable pest infestations or disease infection. Tree in severe decline.
- A **Poor** = Tree may be suppressed, drought stressed, or had at least 1 large branch failure. Disease or pest infestations may be present. Can potentially be retained with attention to mitigation pruning, cultural care changes, pest and disease control.
- •Ā Fair = May have had minor past failures. Some pests or structural defects may be present, small deadwood. Minor to moderate drought stress present. Defects may be mitigated with pruning and pests can be controlled.
- •Ā Good = A relatively healthy tree with minor to no structural defects with minimal to no pest observed. Defects can be mitigated with pruning and pests can be controlled.
- •Ā Very Good = Trees that have had professional arboricultural care. No structural defects, disease or pests identified.
- Ā **Excellent** = Specimen tree with superior form, root structure and health. Tree has been regularly cared for by professional arborists over its lifetime, E.g., estate or arboretum tree.

Trees Inventoried

In total, I inventoried 3 native oak trees with DSHs measuring 6 inches or greater and having CRZs within or adjacent to the proposed building footprints and construction impact areas. The complete inventory, including tree numbers, species, CRZ and TPZ measurements, is provided in Appendix A- Tree Inventory and Tree Protection. I numbered all trees in the field with a metal tag which I attached to the trunk at approximately 4-feet above ground. Tag numbers assigned were 82, 83 & 84. All inventoried trees were plotted on the Tree Inventory Map included in Appendix B Site Maps – Map 1.

Tree 82 – A 44-inch diameter valley oak located along Rolling Hills Road, approximately 150 feet north of the intersection of Creston Road. See Appendix B - Site Maps – Map 1. The tree appeared to be growing in the city-owned right of way approximately 2-feet east of the property line. The trunk of the tree was 17- feet from the current white line at the edge of Rolling Hills Road. See Appendix E- Photographs - Photos 1-4.

The tree was in *Poor* condition for the following reasons.

- •Ā Tree was drought stressed which was indicated by dead wood in its canopy
- •Ā Tree had two large, previous, branch failures due to excessive end-weight
- •Ā Lowest, large, cracked and decayed branch on north side of tree was structurally unstable
- •Ā Numerous, large diameter branches were overextended
- •Ā Tree has been pruned for utility line clearance which has removed no less than 25% of the live canopy over the years. See Appendix E- Photographs Photos 1-4.

Tree 83 – A 12-inch diameter coast live oak was located at the fenceline separating your property from the 711 Rolling Hills Road property. According to the tree survey map, the tree appears that it may be jointly owned by the neighboring property owner. See Appendix B - Site Maps – Map 1- Tree Inventory. See Appendix E - Photographs – Photo 5.

The tree was in *Fair* condition for the following reasons.

- •Ā The tree was young and had good vigor
- •Ā No notable disease or pest issues
- •Ā Structurally, it was asymmetrical and had a lean to the west which was caused by competition from adjacent larger trees.

Tree 84 – A 24-inch diameter valley oak was located in the northeast section of the property approximately 50-feet west of the fenceline. See Appendix B - Site Maps – Map 1. See Appendix E- Photographs – Photo 6.

The tree was in *Good* condition for the following reasons.

- •Ā The tree was young and had good vigor
- •Ā No notable disease or pest issues
- •Ā Structurally, the tree had some minor issues with competing branches, but they can be mitigated through pruning.

Tree Removals

Tree 82 – A 44-inch diameter valley oak will require removal if this project is approved.

Reasons for Removal:

- A The tree was in poor condition. It has had two major branch failures and another large branch on the north side of the tree is cracked, decayed and has a high potential to fail. Furthermore, multiple branches in the canopy are overextended due to utility pruning. See Appendix E-Photographs - Photos 1-4
- A Removing the large branch on the north side of the tree and reducing the numerous overextended branches to mitigate branch failure hazards would eliminate approximately 50% of its live canopy. The standard maximum for live canopy removal is 25% per pruning event. Removing up to 50% of the canopy would cause extreme stress to the tree.
- A Based on the site and grading plan this tree will have impacts within 7' of its trunk. Critical and structural roots will need to be cut. Up to 50% of the tree's CRZ will be impacted due to curb, gutter and street improvements required by the city. The tree will not survive the impacts and its root stability would likely be compromised. See Appendix B Site Maps Maps 2&3. See also Appendix E- Photographs Photo 2.
- A Civil plans show a convergence of storm drainage pipes to be installed beneath the tree. This would contribute further to the damage of the roots and the trees decline. See Appendix B - Site Maps – Map 3.

•Ā The combination of root encroachments from road widening and sidewalk installation as well as underground drainage installation and significant canopy reduction, would cause impacts that this tree would not survive. Short of the city waiving the requirement for road widening, curb, gutter and sidewalk improvements and redesigning storm drainage, I don't see a way to protect and preserve this tree.

Tree Protection

Critical Root Zones were determined by giving a radius of 1-foot per every inch of tree diameter. E.g., a 12-inch diameter tree would have a 12-foot CRZ radius measured from the outside of the trunk. Distances for CRZs are listed in the Tree Inventory & Tree Protection table included in Appendix A. Trees requiring arborist supervision are also called out in the Tree Inventory & Tree Protection table.

Fencing shall be provided for all trees listed for tree protection in the inventory provided in Appendix A and shall be set according to specifications listed. If there is any confusion about where to place fencing, contact the project arborist, Rodney Thurman at 805 234 8760.

Tree protection signs shall be placed on the TPZ fencing and be spaced 10 feet apart. Signs shall be weatherproof, and state, "Tree Protection Zone – Do Not Enter". The signs shall also include the project manager's and project arborist's phone numbers. Signs shall remain in place until completion of the project. See Appendix C – Tree Protection Diagrams - Diagram 1 – Tree Protection Fencing for further detail.

No construction or ground disturbance shall be allowed inside the fenced TPZ without the project arborist's permission and/or oversite. If you are unsure whether an activity is allowed, refer to Appendix D - Tree Protection Requirements – Quick Reference List or contact the project arborist.

Trees to be Protected

I have recommended Trees 83 & 84 for protection. They will require tree protection fencing and trunk protection according to the specifications provided below. Supervision of any construction work in or adjacent to the CRZ shall be conducted by the project arborist.

Tree 83 has a proposed storm drainage pipe 15' to the northwest of the trunk of the tree as well as road paving within 13' of the tree. I have set the TPZ fencing limit at 11' northwest of the trunk of the tree and 14' northeast and southwest of the trunk, on the project side of the tree, which will allow for construction activities and still protect the tree. For TPZ delineations, see Appendix B - Site Maps – Map 4.

The trunk shall also be protected by installing 2x4's against the trunk and securing them with zip-ties or wire. Do not anchor wood or wire directly to trunk. See Appendix C - Tree Protection Diagrams – Diagram 2 for further instruction.

A block wall or poured concrete property line fencing is also proposed adjacent to the tree and will likely intersect its trunk. To avoid damage to the tree, the fence within the 14' CRZ shall be constructed of wood panels mounted on driven, steel posts rather than block or concrete.

All work within or adjacent to the CRZ of Tree 83 will require an arborist's supervision to ensure that all tree protection measures are implemented. To limit damage to critical roots, **all digging within or adjacent to tree CRZ shall be performed by hand**. If a root 1" diameter or larger is exposed, it shall not be cut without the project arborist's permission.

If the project arborist determines that a root over 1-inch diameter needs to be cut, it shall be cut by hand with a pruning saw or reciprocating saw "Sawzall". Once roots are severed, the project arborist may approve use of machinery to complete excavation and grading.

Tree 84 is proposed to be in a greenspace area. Your grading plan has allowed for an adequate TPZ. Some roots, however, will likely need to be cut on the north and northwest sides of the tree to allow for the retaining wall to be built. The wall will be far enough from the tree that stability will not be compromised, and tree health will not be substantially impacted.

Tree 84 has a diameter of 24-inches; therefore, it will have a CRZ radius of 24 feet. I have allowed for the Tree Protection Zone (TPZ) to be established at a 22-foot radius from the trunk of the tree. Tree protection fencing shall be set at 22 feet from the **outside** of the tree trunk to form an enclosed, circular TPZ beneath the tree. For TPZ delineations, see Appendix B - Site Maps – Map 5.

The trunk shall also be protected by installing 2x4's against the trunk and securing them with zip-ties or wire. Do not anchor wood or wire directly to trunk. See Appendix C - Tree Protection Diagrams – Diagram 2 for further instruction.

A retaining wall shall be installed around the north and northwest sides of the tree at a distance of 22' measured from the **outside** of the tree trunk to prevent fill soil from smothering roots or encroaching upon the trunk. Your plan already includes a provision for the wall. The plan specifies a wall no taller than 4 feet. That will be a sufficient height to retain fill. The wall may be built using reinforced concrete poured in place or mortared and reinforced concrete blocks. See Appendix C- Tree Protection Diagrams – Diagram 3 for more detail.

All work within or adjacent to the CRZ of Tree 84 will require an arborist's supervision to ensure that all tree protection measures are implemented. To limit damage to critical roots, **all digging within or adjacent to tree CRZ shall be performed by hand**. If a root 1" diameter or larger is exposed, it shall not be cut without the project arborist's permission.

If the project arborist determines that a root over 1-inch diameter needs to be cut, it shall be cut by hand with a pruning saw or reciprocating saw "Sawzall". Once roots are severed, the project arborist may approve use of machinery to complete excavation and grading.

Pruning

Oak trees being retained in this project will require some pruning maintenance to give clearance for vehicles to pass beneath or beside them when the project is complete. In general, clearance for fire, garbage and delivery trucks require 13.5 feet of vertical clearance above the roadway. Large branches extending into the roadway should be trimmed to the edge of the roadway or removed at the trunk connection to give long term safety clearance. Any deadwood 2' diameter and larger or structurally unstable branches should also be removed. All pruning work shall be performed before any project construction starts.

Oak Tree Replacements

The City of Paso Robles requires replacements for any native oak removed that is 6-inches in diameter or greater. This requirement is at the discretion of the Director of Public Works. The following is excerpted from the city's Oak Tree Ordinance 835 N.S.:

Replacement oaks being equivalent to twenty-five percent of the diameter of the removed tree(s). (For example, the replacement requirement for removal of two trees of fifteen-inch DBH (thirty total diameter inches), would be seven and one-half inches (thirty inches removed multiplied by twenty-five hundredths replacement factor).

This requirement could be satisfied by planting five, one and one-half inch caliper trees, or three, two-and one-half-inch caliper trees or any other combination totaling seven and one-half inches). A minimum of two, twenty-four-inch box, one and one-half inch minimum trunk caliper measurement trees shall be required for each oak tree removed.

Replacement trees shall be located on the same property as where the tree is approved for removal or, subject to approval of the director, arrangements can be made to locate the replacement trees on public property. Planting standards for replacement trees shall he consistent with City Standard Details and Specification L-4 except that deep root barriers shall not be required if the trees are not adjacent to sidewalk areas. Oak tree preservation and maintenance measures shall be consistent with the provisions of this chapter.

The combined diameter of oak trees proposed for removal within your project is 44 inches. Twenty-five percent of 44 inches is 11 inches. Therefore, eight (8) native oaks at the minimum 1.5-inch caliper, twenty-four-inch box size or six (6) native oaks at 2-inch caliper, twenty-four-inch box size, would be required to be planted on the premises or somewhere in the city, upon the Public Works Director's approval.

When incorporating new oak trees into your landscape, you will need to allow for at least an 8' x 8' planting area. Curbing for the planting area shall not count as part of the planting area dimensions. Planting areas smaller than 8'x 8' will result in sidewalk and curb buckling when tree roots mature. Distances between oak trees should be no less than 25 feet. If oak trees can be incorporated into open, non-hardscape areas, they will have a higher success rate.

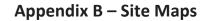
Pre-Construction Meeting

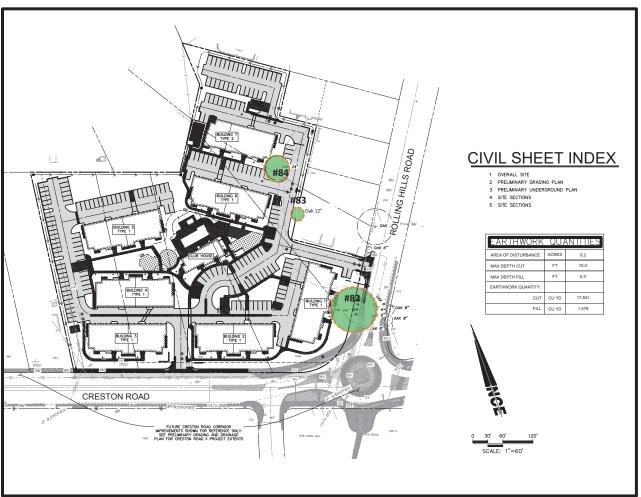
Prior to any construction or ground disturbing activities for this project, the project arborist shall meet with all contractors involved with the construction of the home to review tree protection measures. Any new contractors brought on site shall also meet or communicate with the project arborist to ensure they are aware of all tree protection measures.

Conclusion

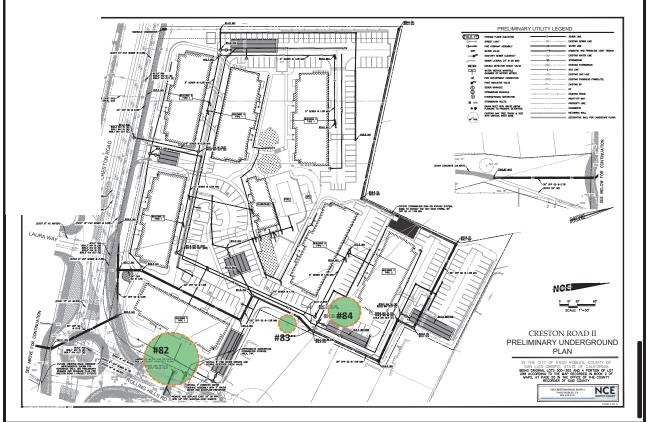
There were three (3) native oaks on the site you are planning to develop. You have designed the apartment complex to retain trees 83 & 84, which are the highest quality oaks on site. Tree 82, due to road widening improvements as well as storm drainage installation, would be severely impacted and not likely survive. Even if you were able to design around the tree, it was in poor condition and would not warrant the additional effort and expense for the limited years it would continue to live.

Respectfully Submitted,

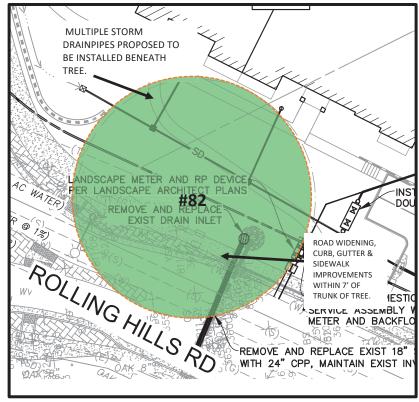

Ke drey Shuman

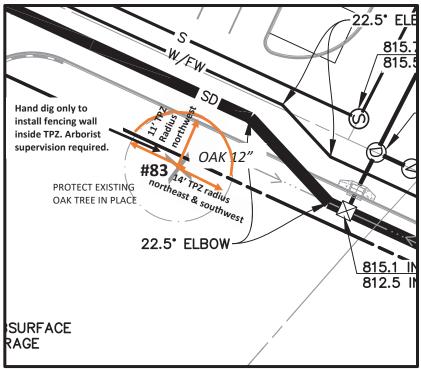

Rodney D. Thurman ISA Board Certified Master Arborist PN-2684BUM ISA Municipal Specialist ISA Utility Arborist ISA Tree Risk Assessor Qualification

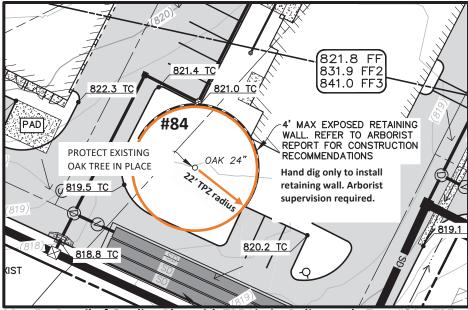
Appendices: tree inventory, site maps, tree protection diagrams, tree protection requirements quick reference list, photographs

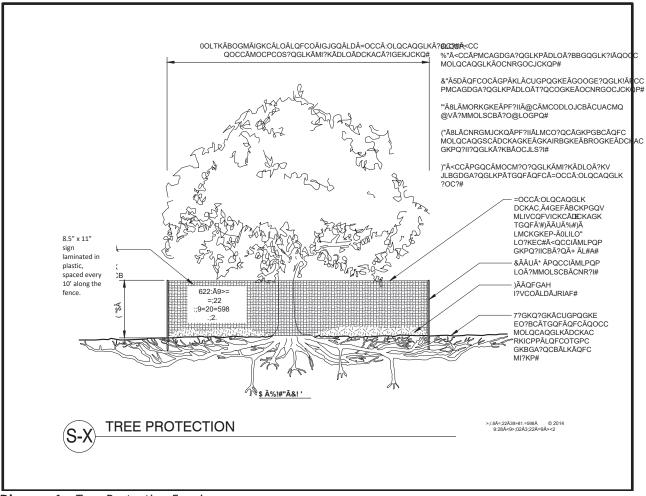

#	Botanical name	Common name		Cond.	CRZ Radius	Impact	TPZ Fence Radius from tree	Protect	Comments
82	Quercus lobata	valley oak	44"	poor	44'	50%	none		Remove – Based on site and grading plan, this tree will have impacts of at least 50% to its CRZ due to curb, gutter, street and utility improvements. Tree will not survive impacts.
83	Quercus douglasii	coast live oak	12″	fair	12'	Less than 5%	11' northwest, 14' all other direction on project side of tree.	YES	Retain - Based on site and grading plan the tree can be retained if all tree protection measures are followed. Arborist supervision of work in or adjacent to CRZ required.
84	Quercus lobata	valley oak	24"	good	24'	Less than 5%	22' all directions	YES	Retain - Based on site and grading plan the tree can be retained if all tree protection measures are followed. Installation of retaining wall on north side of tree will be needed. Arborist supervision of work in or adjacent to CRZ required.

Appendix A – Tree Inventory & Tree Protection

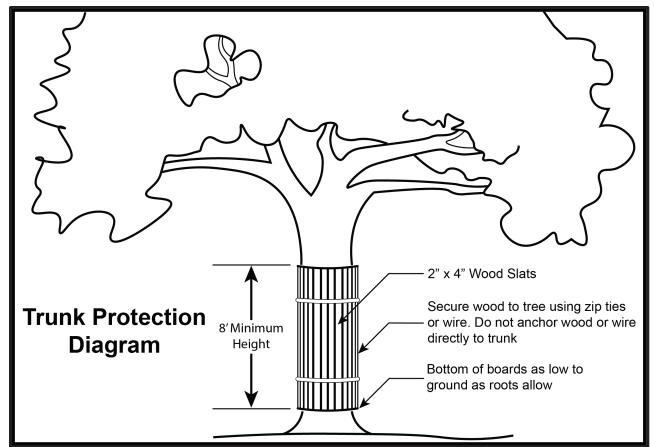



Map 1 - Tree Inventory Map – Overall Site Plan - Green highlighted circles indicate location of native oak trees 6' diameter and greater. Tree numbers correlate with numbers provided in Appendix A - Tree Inventory and Protection.

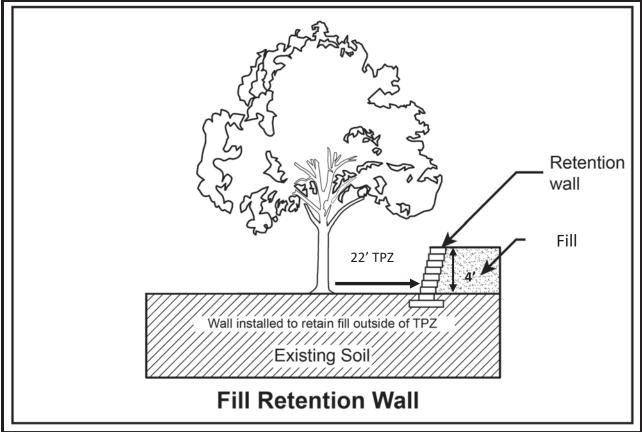

Map 2 - Grading Plan – Current underground plan showing proposed storm drainage pipe route.


Map 3 – Detail of Grading Plan & Civil improvements Tree #82 – Overall health of tree is Poor. Proposed roadway improvements, sidewalk and storm drainage pipe route all encroach and impact tree's CRZ 50% or more.

Map 4 – Detail of Grading Plan & Civil Improvements Tree #83 – Storm drainage pipe has been re-routed around the tree to give 15' distance northwest of the tree. Impact to critical roots will be negligible. Provide 11'tpz NW, and 14' NE and SW.



Map 5 – Detail of Grading Plan with TPZ Limits Delineated - Tree #84 – TPZ fencing to be set at 22' from trunk of tree. Orange highlight shows TPZ fencing limit. Retaining wall to be constructed on the north and northwest side of tree as drawn.



Appendix C - Tree Protection Diagrams

Diagram 1 – Tree Protection Fencing

Diagram 2 – Trunk Protection – Secure wood to tree using zip ties or wire. Do not anchor wood or wire directly to trunk.

Diagram 3 – 4' maximum height retaining wall to be installed at 22' from trunk of tree on north and northwest sides of tree to prevent fill soil from suffocating critical roots.

Appendix D - Tree Protection Requirements - Quick Reference List

- •Ā **Tree Protection During Construction** Tree protection shall be provided during the entire time construction activities occur. A Tree Protection Zone (TPZ) shall be established and maintained to ensure protected roots remain undisturbed.
- Ā Tree Protection Fencing Tree protection fencing is required to be in place for the duration of the construction project and shall be installed before starting any ground disturbing activities. Do not remove any tree protection fencing or enter the TPZ without approval of the project arborist. The fencing shall delineate and protect the tree protection zone. The fencing shall be 4 feet tall and made of orange, high density, polyethylene with 3.5" x 1.5" openings. It shall be installed on steel posts 8 feet on center and tightly stretched to prevent sagging. See Appendix C Tree Protection Diagrams Diagram 1 Tree Protection Fencing.
- •Ā **Trunk Protection -** Tree protection fencing is required See Appendix C Tree Protection Diagrams - Diagram 2 – Trunk Protection.
- Ā Tree Protection Signage Weatherproof, tree protection signs stating "Tree Protection Zone Do Not Enter" shall be placed on the fencing and be spaced 10 feet apart. Signs shall remain in place until completion of the project. See Appendix C - Tree Protection Diagrams - Diagram 1 – Tree Protection Fencing.
- •Ā **Pre-Construction Meeting** A meeting with all contractors involved in the project shall occur with the project arborist before beginning construction activities. Any new contractors brought on site shall also meet or communicate with the project arborist to ensure they are aware of tree protection measures.
- •Ā **Preparing Tree Protection Zone** If construction occurs during the months of June through November, the TPZ's shall be irrigated to a depth of 12 inches before construction begins. This will ensure the trees are properly hydrated. Additional irrigations during "heat-waves" may be recommended by the project arborist.
- •Ā Root Protection No grading, trenching, paving or any other soil disturbance shall occur within or adjacent to the TPZ of the tree without permission and supervision by the project arborist. No trenching or excavation for footings, foundations, utilities or roadways shall occur within or adjacent to the TPZ without first, hand trenching the location and exposing roots.

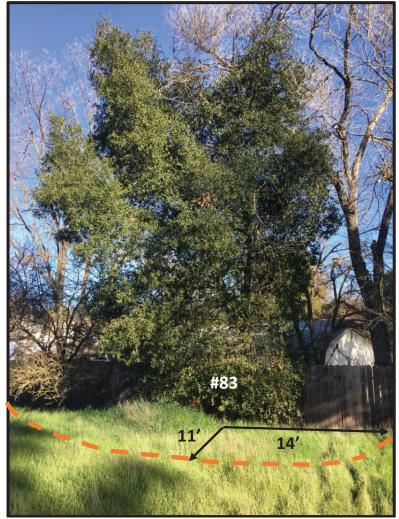
If possible, conduit or other utilities shall be "fished" below roots larger than 1-inch diameter. Any roots 1-inch diameter or larger that are approved for pruning shall be hand cut with a clean pruning saw or Sawzall. Once roots are hand cut, machinery can remove the severed roots. Cutting any roots 1-inch diameter or larger requires supervision by the project arborist.

•Ā Root Pruning - If the project arborist determines that a root over 1-inch diameter needs to be cut, it shall be cut by hand with a pruning saw or reciprocating saw "Sawzall". After cutting a root, the area shall be backfilled as soon as possible with moist soil or covered with wet burlap until backfill can be completed. Burlap shall be kept wet the entire time it is in use for cut-root protection.

- •Ā **Dumping, Cleanout or Storage of Materials** No construction materials, soils, or debris shall be stored in the TPZ. No concrete, plaster, paint or chemical washout shall be allowed within the TPZ or Critical Root Zone (CRZ).
- •Ā Monitoring An initial inspection shall be completed by the project arborist prior to commencement of construction activities to ensure that all tree protection measures have been put in place. Weekly inspections of the TPZ and associated fencing shall also be completed by the project arborist until construction is complete. Any root pruning, excavation, grading or filling within 5 feet of the TPZ shall a be monitored by the project arborist.
- •Ā **Project Arborist Contact Information** Rodney Thurman Heritage Tree Arboricultural Consulting Cell: 805 234 8760 Email: rodney@heritagetreeconsulting.com

Appendix E – Photographs

Photo 1 - View of Tree 82 from Rolling Hills Road.


Photo 2 - View of Tree 82 from corner of Creston Road. Utility line clearance pruning, overextended branches. Proposed road improvements within 7' of trunk of tree. Storm drains proposed beneath tree.

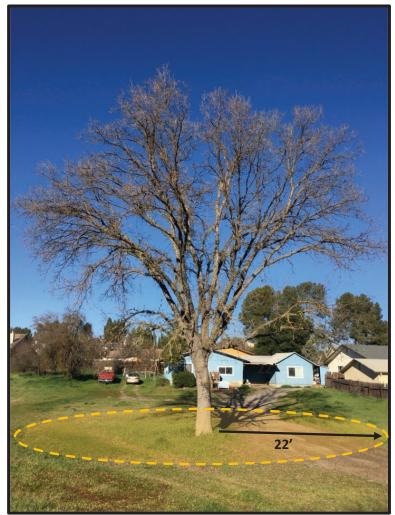

Photo 3 - View of broken branch west side of tree circled in yellow.

Photo 4 - View of decayed and cracked scaffold north side of tree circled in yellow.

Photo 5 - View of Tree 83. Proposed storm drainpipes and paving will not significantly impact tree. Set TPZ fence at 11' to northwest, and 14' to the northeast and southwest. Tree will need pruned for vehicle clearance.

Photo 6 - View of Tree 84 – 22' TPZ radius measured from outside of trunk. Set TPZ fence at 22'. Hand dig only - required when constructing retaining wall.

BIOLOGICAL RESOURCES ASSESSMENT REPORT

ROLLING HILLS APARTMENT PROJECT 1049 CRESTON ROAD PASO ROBLES, CALIFORNIA

Project No. 2202-0711

Prepared for:

Red Tail Multifamily Land Development 2082 Michelson Drive, 4th Floor Irvine, California 92612

Prepared by:

Padre Associates, Inc. 369 Pacific Street San Luis Obispo, California 93401

APRIL 2022

Authenticity and Signature Page

Padre Associates, Inc. 369 Pacific Street San Luis Obispo, California 93401

Padre Associates, Inc. hereby certifies that all statements furnished in the following Biological Resources Assessment Report and all supporting information acquired for this biological assessment are true and correct to the best of our knowledge and belief. Further, we certify that the field survey associated with this report was performed by Padre and that the report accurately represents all information retained from the field visit.

Christina Santala Project Biologist

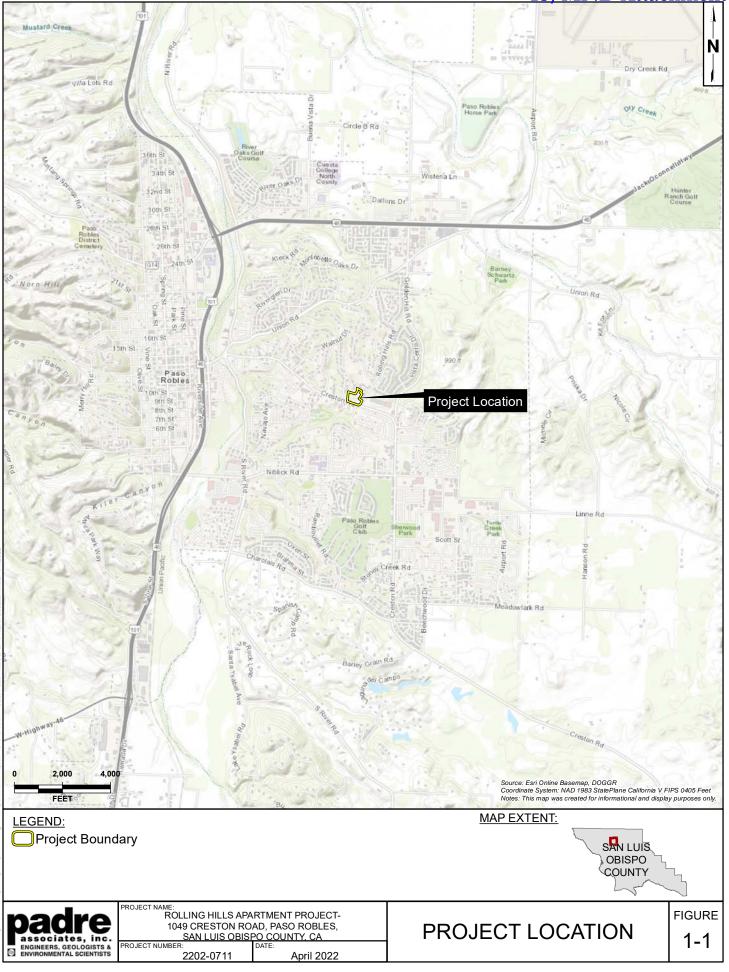
Alyssa Berry Senior Biologist

Thermon Gonzaley

Shannon Gonzalez Project Biologist

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 REGULATORY FRAMEWORK
2.1 FEDERAL REGULATIONS2-12.1.1 Endangered Species Act of 1972.2-12.1.2 Migratory Bird Treaty Act.2-12.2 STATE REGULATIONS2-22.2.1 California Fish and Game Code.2-22.3 LOCAL REGULATIONS2-2
3.0 METHODS
3.1 DESKTOP REVIEW 3-1 3.2 FIELD SURVEYS 3-1
4.0 FINDINGS
4.1ENVIRONMENTAL SETTING4-14.2BIOLOGICAL RESOURCES4-14.2.1Botanical4-14.2.2Wildlife4-24.2.3Aquatic Resources4-24.3SPECIAL-STATUS BIOLOGICAL RESOURCES4-34.3.1Special-Status Habitats4-64.3.2Special-Status Botanical4-64.3.3Special-Status Wildlife4-7
5.0 POTENTIAL IMPACTS
6.0 RECOMMENDED MITIGATION MEASURES
7.0 REFERENCES
LIST OF FIGURES
Figure 1-1. Project Location1-2
Figure 4-1. Biological Assessment Survey Results4-4
Figure 4-2. Regional Special-Status Biological Resources4-5
LIST OF TABLES
Table 4-1. Oak Trees Observed 4-2
APPENDICES
Appendix A Site Photographs
Appendix B Vascular Plant List
Appendix C Wildlife List


Appendix D CNDDB Results

1.0 INTRODUCTION

Padre Associates, Inc. (Padre) has prepared this Biological Resources Assessment Report (Report) on behalf of Red Tail Multifamily Land Development (Client) to document the results of a biological resources assessment completed in support of the environmental review process for the proposed Rolling Hills Apartment Project (Project) at 1049 Creston Road, Paso Robles, San Luis Obispo County, California (Project Site) (Figure 1-1 – Project Location). The Project Site consists of one parcel of land approximately 6.21-acres in size. This Report documents the results of a desktop review and field survey, and includes a discussion of existing biological resources, special-status biological resources that have the potential to occur within the proposed Project Site, potential Project impacts to these resources, and recommendations for impact avoidance and minimization measures.

IS/MND Attachment 6

2.0 REGULATORY FRAMEWORK

The regulatory framework identifies policies and plans administered by resource agencies pertaining to biological resources that are known to exist and/or have the potential to occur within the Project region.

2.1 FEDERAL REGULATIONS

2.1.1 Endangered Species Act of 1972.

The Federal Endangered Species Act (FESA), administered by the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration, and the National Marine Fisheries Service (NMFS), provides protection to species listed as Threatened or Endangered, and critical habitat designated for the protection of such species. The FESA prohibits "take" of Threatened and Endangered species (including plants) except under certain circumstances and only with authorization from the USFWS through a permit under sections 4(d), 7, or 10(a) of the FESA. Under the FESA, take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct.

Critical Habitat is defined in Section 3(5)(A) of the FESA as: (1) specific areas within the geographical area occupied by the species at the time of listing, on which are found those physical or biological features that are essential to the conservation of the listed species and that may require special management considerations or protection; and (2) specific areas outside the geographical area occupied by the species at the time of listing that are essential for the conservation of a listed species.

The FESA also provides protection to those species proposed to be listed under FESA or critical habitats proposed to be designated for such species. In addition to the listed species, the federal government also maintains lists of species that are neither formally listed nor proposed but could potentially be listed in the future. These federal candidate species include taxa for which substantial information on biological vulnerability and potential threats exist and are maintained to support the appropriateness of proposing to list the taxa as an Endangered or Threatened species.

2.1.2 Migratory Bird Treaty Act

The USFWS also administers the Federal Migratory Bird Treaty Act (MBTA) of 1918 (16 USC 703-711). Under the MBTA, it is unlawful to take, possess, buy, sell, purchase, or barter any migratory bird listed in 50 CFR 10, including feathers or other parts of birds, nests, eggs or products, except as allowed by implementing regulations (50 CFR 21). In 2017, Solicitor of the Department of the Interior issued a legal opinion (M-37050 or M-Opinion) stating that "The Migratory Bird Treaty Act Does Not Prohibit Incidental Take" which in effect revoked take protections under the MBTA. On January 5, 2021, the USFWS published a final rule that defined the scope of the MBTA stating that incidental take of birds resulting from an activity is not prohibited when the underlying purpose of that activity is not to take birds. On May 6, 2021, the USFWS announced a proposed rule to revoke the January 7 final regulation that limited the scope of the MBTA, in an effort to reinstate federal MBTA protections. The proposed rule is pending as of June 2021.

In the interim, migratory birds are protected (for take) through AB 454 California Migratory Bird Protection Act (California Fish and Game Code 3513).

2.2 STATE REGULATIONS

2.2.1 California Fish and Game Code.

The California Department of Fish and Wildlife (CDFW) administers a number of laws and programs designed to protect plants, fish, and wildlife resources. Principal of these is the California Endangered Species Act of 1984 (CESA - Fish and Game Code Section 2050) that regulates the listing and take of State Endangered and Threatened species. CDFW also maintains lists of Candidate-Endangered species and Candidate-Threatened species. CDFW manages the California Native Plant Protection Act of 1977 (Fish and Game Code Section 1900, *et seq.*), which was enacted to identify, designate, and protect rare plants. The California Native Plant Society (CNPS) operates under a Memorandum of Understanding (MOU) with the CDFW which outlines broad cooperation in rare plant assessment and protection and formalizes cooperative ventures such as data sharing and production of complementary information sources for rare plants.

2.3 LOCAL REGULATIONS

San Luis Obispo County (County) incorporates all USFWS, CDFW, Regional Water Quality Control Board (RWQCB), and U.S. Army Corps of Engineers (ACOE) standards when assessing project impacts to vegetation, wildlife, and wetland habitats, as well as the California Environmental Quality Act (CEQA) evaluation process, when applicable. The County has developed a framework of land use policies and recommendations intended to reduce impacts to sensitive biological resources.

Oak trees are protected under San Luis Obispo County Land Use Ordinance, Title 22; Chapters 22.56 (Tree Preservation) and 22.58 (Oak Woodland Ordinance) (San Luis Obispo County, 2021).

3.0 METHODS

Methods to collect biological resources information included a desktop review and field survey of the Biological Study Area (BSA), which encompassed the entire Project Site.

3.1 DESKTOP REVIEW

Prior to conducting the field survey, a query of the CDFW California Natural Diversity Data Base (CNDDB) was conducted to identify documented occurrences of special-status plant and wildlife species, and sensitive habitats within the vicinity of the BSA. The CNDDB is a continually refined and updated computerized inventory of rare animals, plants, and natural community location information in California, including species that are listed as federally and/or State endangered/threatened. All wildlife taxa listed with the CNDDB are considered "special animals" in which the CDFW is interested in tracking, regardless of their legal protection status.

The Project Site is located within both the Paso Robles and Templeton 7.5-minute United States Geological Survey (USGS) quadrangle, and the CNDDB search was focused on these and seven adjacent quadrangles within approximately ten miles of the BSA, including Templeton, Adelaida, York Mountain, Estrella, Creston, San Miguel, Atascadero, and Santa Margarita. The USFWS Critical Habitat database was also investigated to identify critical habitat for federally listed species within the BSA or surrounding region. In addition, the USFWS National Wetlands Inventory (NWI) was accessed to identify previously documented wetlands within the BSA or surrounding area.

3.2 FIELD SURVEYS

On March 24, 2022, Padre Biologists, Christina Santala and Shannon Gonzalez completed a field survey within the BSA focused on the existing biological resources, presence/absence of special-status plant and wildlife species and habitats, as well as the suitability of habitat to support these species within the BSA.

Field survey methods consisted of walking paths of opportunity throughout the BSA and recording wildlife species observed by visual observation using binoculars, indirect signs (e.g., tracks, scat, skeletal remains, and burrows), and/or auditory cues (i.e., calls and songs). Field notes on botanical resources and vegetation communities/habitats were also recorded. Field surveys were conducted in March, within the typical blooming period for most special-status plant species know to occur in the proposed Project region. All oak trees (*Quercus* sp.) within the Project Site were documented (e.g., diameter at breast height [DBH] and overall health) and mapped using GPS in the field.

Vegetation within the BSA was divided and classified into vegetation types based on *A Manual of California Vegetation, Second Edition* (MCV2) (Sawyer, et. al., 2009), or described as site-specific vegetation and/or land use cover types not treated in the MCV2 (i.e., ruderal). All identifiable plant species observed within the BSA were documented. Plant specimens that were not positively identified in the field were further examined using appropriate botanical keys, including *The Jepson Manual Vascular Plants of California* (Baldwin et. al., 2012).

4.0 FINDINGS

The following discussion of biological resources includes those that were observed within the BSA, those identified in the desktop review, and resources that have the potential to occur based on the presence of suitable habitat. Supporting documentation includes Figure 4-1 – Biological Resources Assessment Results, Figure 4-2 – Regional Special-Status Biological Resources, Appendix A – Site Photographs, Appendix B – Plant List, Appendix C – Wildlife List, and Appendix D – CNDDB Results.

4.1 ENVIRONMENTAL SETTING

The Project Site is located on the corner of Creston Road and Rolling Hills Road, approximately 1.2 miles east of Highway 101 within the City of Paso Robles, San Luis Obispo County, California. The Project Site is a vacant lot surrounded by residential and commercial development and infrastructure. The topography of the area is level to moderately sloping and is situated approximately 2.5 miles east of the Santa Lucia Range and approximately 9.5 miles southeast of the Cholame Hills.

4.2 BIOLOGICAL RESOURCES

4.2.1 Botanical

A list of plant species identified in the BSA during the March 2022 field survey is provided in Appendix B – Plant List. Vegetation communities documented to occur within the Project Site are described in the following paragraphs.

Wild oats and annual brome grassland (Avena spp. – Bromus spp. Herbaceous Semi-Natural Alliance). The Wild oats and annual brome grassland alliance occurs in all topographic settings in foothills, waste places, rangelands, and openings in woodlands. This alliance is characterized by presence of slender wild oats (Avena barbata), wild oats (Avena fatua), false brome (Brachypodium distachyon), rattlesnake grass (Briza maxima), ripgut brome (Bromus diandrus), soft chess (Bromus hordeaceus) and/or foxtail barley (Hordeum murinum) as dominant or co-dominant with other non-natives in the herbaceous layer; cover is open to continuous (Sawyer et. al., 2009). As observed during the field survey, this alliance occurred throughout the BSA, and appeared to be periodically mowed and/or disked, likely for fire fuel reduction purposes. Dominant to co-dominant species included slender wild oats, wild oats, ripgut brome, red brome (Bromus madritensis ssp. rubens), redstem filaree (Erodium cicutarium), fiddleneck (Amsinckia sp.), with sparse to moderate occurrences of telegraph weed (Heterotheca grandiflora), miniature lupine (Lupinus bicolor), soap plant (Chlorogalum pomeridianum var. pomeridianum) and Mediterranean vetch (Vicia benghalensis). Intermittent occurrences of mature trees and shrubs included Valley oak (Quercus lobata), Coast live oak (Quercus agrifolia), cultivated almond (Prunus sp.), Western sycamore (Platanus racemosa), cottonwood (Populus fremontii), coyote brush (Baccharis pilularis), and planted yucca (Yucca sp.). This alliance is not considered sensitive by the CDFW and is not protected under CEQA.

Ornamental. Within this Report Ornamental is a site-specific vegetation classification that describes the planted landscape trees that overlap a portion of the western boundary of the Project Site. Tree species included blue gum (*Eucalyptus globulus*), pine (*Pinus* sp.) and Coast live oak. Ornamental trees may provide suitable foraging and nesting habitat for fauna. This vegetation community is not considered sensitive by the CDFW and is not protected under CEQA.

Ruderal. Within this Report, Ruderal is a term used to describe the unpaved access roads and parking areas within the BSA. Disturbed areas that are not paved can support vegetative cover consisting primarily of disturbance adapted plant species (ruderal species). As observed during the field survey, ruderal areas ranged from bare ground to moderate vegetative cover comprised of non-native species including remnant wild oats (*Aven*a spp.), ripgut grass, English plantain (*Plantago lanceolata*), and red-stem filaree. This vegetation community is not considered sensitive by the CDFW and is not protected under CEQA.

4.2.2 Wildlife

Wildlife was identified during the survey through indirect sign and direct observations of individuals. Species observed and detected included western fence lizard (*Sceloporus occidentalis*), California scrub jay (*Aphelocoma californica*), house finch (*Haemorhous mexicanus*), phainopepla (*Phainopepla nitens*), and Botta's pocket gopher (*Thomomys bottae*), A complete list of observed wildlife species can be found in Appendix C – Wildlife Species Observed within the BSA.

4.2.3 Aquatic Resources

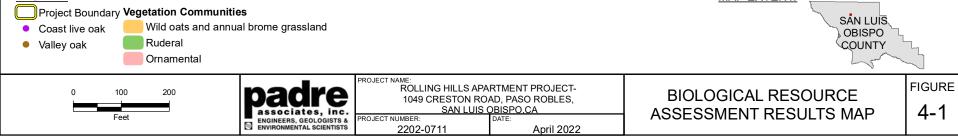
Based on the results of the desktop review and field observations, no aquatic resources were identified within the BSA, however, several aquatic features were identified within one mile outside of the BSA. The NWI recorded features include a Riverine unnamed drainage approximately 0.2 miles southwest and the Salinas River approximately 0.9 miles west, a Freshwater Pond approximately 0.73 miles south, and a Freshwater/Forested /Shrub Wetland approximately 0.76 miles southwest of the BSA (USFWS, 2022b).

4.2.4 Oak Trees

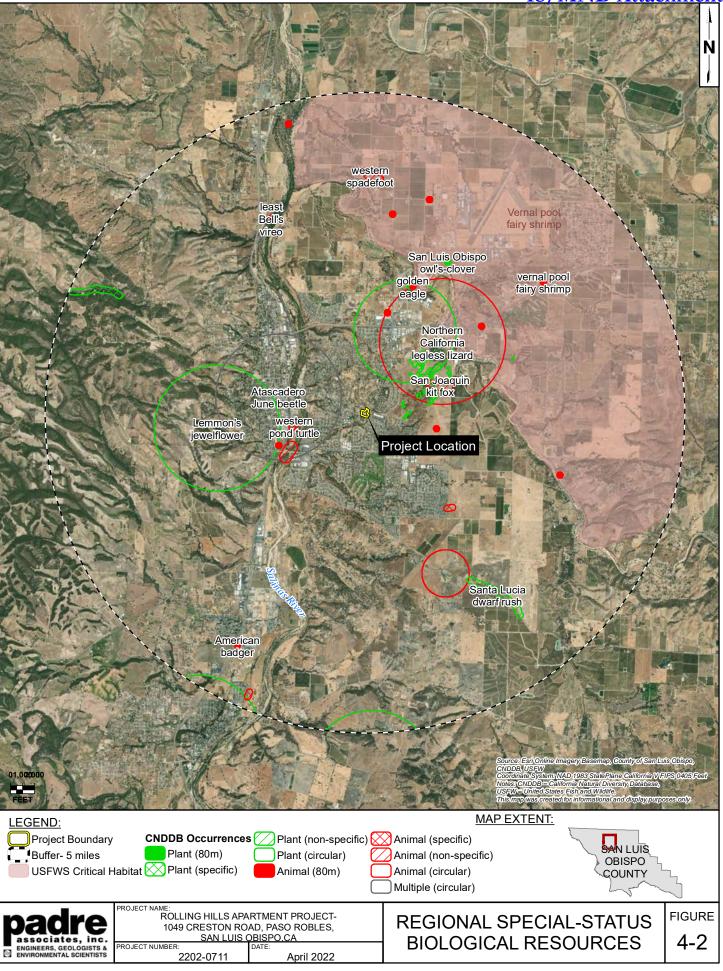
Two valley oak tree (*Quercus lobata*) and two coast live oak trees were observed within the BSA. Table 4-1 lists the species and Diameter at Breast Height (DBH).

Oak Species	DBH	Notes
Valley oak 1	24 inches	Mature, healthy; located on southwestern perimeter of Project limits along Rolling Hills Road
Valley oak 2	43 inches	Mature, healthy; located near unpaved driveway in western portion of the Project Site.
Coast live oak 1	3 inches	Sapling, healthy, situated in small group of cottonwood saplings.
Coast live oak 2	3 inches	Sapling, healthy, situated in clump of coyote brush and ornamental vegetation.

Table 4-1. Oak Trees Observed



4.3 SPECIAL-STATUS BIOLOGICAL RESOURCES


Results of the nine-quadrangle (approximately ten miles surrounding the Project Site) CNDDB query for regional occurrences of special-status plant and wildlife species, and sensitive vegetation communities can be found in Appendix D (CDFW, 2022a). This Report focuses on the special-status plants and wildlife biological resources within five miles of the BSA (Project region) that have a greater potential to occur within the Project Site based on proximity of documented occurrences and suitable habitat. Figure 4-2 depicts CNDDB occurrences and USFWS Critical Habitat within five miles of the Project Site.

IS/MND Attachment 6

IS/MND Attachment 6

4.3.1 Special-Status Habitats

No USFWS-Designated Critical Habitat overlapped the BSA. The nearest occurrence was vernal pool fairy shrimp (*Branchinecta lynchi*) USFWS-Designated Critical Habitat approximately two miles northwest of the BSA (USFWS, 2022a).

No sensitive natural communities as defined by CDFW were documented within five miles of the BSA. The nearest occurrence was Valley Oak Woodland, approximately eight miles west of the BSA (CDFW, 2022a).

4.3.2 Special-Status Botanical

Special-status plants are either listed as Endangered or Threatened under FESA or CESA, considered Rare under the California Native Plant Protection Act, or considered rare (but not legally listed) by resources agencies, professional organizations, and the scientific community under the following categories:

- 1. Plants listed or proposed for listing as Threatened or Endangered under the Federal Endangered Species Act (50 CFR 17.12 for listed plants and various notices in the Federal Register for proposed species,).
- 2. Plants that are candidates for possible future listing as Threatened or Endangered under the Federal Endangered Species Act (Federal Register October 10, 2019).
- 3. Plants that meet the definitions of rare or endangered species under the CEQA (State CEQA Guidelines, Section 15380).
- 4. Plants considered by the CNPS to be "Rare, Threatened, or Endangered" in California (Ranks 1B and 2 in CNPS, 2020).
- 5. Plants listed by CNPS as plants about which we need more information and plants of limited distribution (Ranks 3 and 4 in CNPS, 2020).
- 6. Plants listed or proposed for listing by the State of California as Threatened or Endangered under the California Endangered Species Act (14 CCR 670.5).
- 7. Plants listed under the California Native Plant Protection Act (California Fish and Game Code 1900 et seq.).
- 8. Plants considered sensitive by other Federal agencies (i.e., U.S. Forest Service, Bureau of Land Management), state and local agencies or jurisdictions.
- 9. Plants considered sensitive or unique by the scientific community or occurring at the limits of their natural range (State CEQA Guidelines).

Based on the CNDDB query completed as part of the desktop review, there were 37 special-status plant species documented within approximately ten miles of the BSA (Appendix D). Of these species, two have a greater potential to occur within the Project Site based on proximity of documented occurrences (less than five miles) and presence of generally suitable habitat (grassland) within the BSA including San Luis Obispo owl's-clover (*Castilleja densiflora* var. *obispoensis*), and Lemmon's jewelflower (*Caulanthus lemmonii*).

No special-status plant species were observed during the March 2022 field survey. The survey was conducted within the typical blooming period for potentially occurring special-status plant species of the region and would be identifiable in March. Based on the field survey observations and habitat conditions (periodic mowing, dominance of disturbance-adapted plant species) no special-status plant species are likely to occur within the Project Site.

4.3.3 Special-Status Wildlife

Special-status wildlife species are either listed as Endangered or Threatened under FESA or CESA, or considered rare (but not formally listed) by resources agencies, professional organizations, and the scientific community under the following categories:

- Animals listed or proposed for listing as Threatened or Endangered under the Federal Endangered Species Act (50 CFR 17.11 for listed animals and various notices in the Federal Register for proposed species).
- Animals that are candidates for possible future listing as Threatened or Endangered under the Federal Endangered Species Act (Federal Register October 10, 2019).
- Animals that meet the definitions of rare or endangered species under the CEQA (*State CEQA Guidelines*, Section 15380)
- Animal considered Species of Special Concern (SSC) by CDFW (Shuford and Gardali, 2008 for birds; Williams, 1986 for mammals; Moyle et al., 2015 for fish; and Thomson et al., 2016 for amphibians and reptiles).
- Animals listed or proposed for listing by the State of California as Threatened and Endangered under the California Endangered Species Act (14 CCR 670.5).
- Animal species that are fully protected in California (California Fish and Game Code, Section 3511 [birds], 4700 [mammals], and 5050 [reptiles and amphibians]).
- Animal species protected under the Marine Mammal Protection Act (as amended in 1994).
- Birds of Conservation Concern. Migratory and nonmigratory bird species (beyond those already designated as federally Threatened or Endangered) that represent the USFWS highest conservation priorities in effort to draw attention to species in need of conservation action (Shuford and Gardali, 2008).
- Birds on the CDFW Watch List include "Taxa to Watch" (Shuford and Gardali, 2008)

 not on the current Special Concern list but were on previous lists and they have not been state listed under CESA; 2) were previously state or federally listed and now are on neither list; or 3) are on the list of "Fully Protected" species.

Based on the CNDDB query completed as part of the desktop review, there were 32 special-status wildlife species documented within approximately ten miles of the BSA. Of those 32, there are three special-status wildlife species with the potential to occur within the Project Site based on suitable habitat and regional (less than five miles) documented occurrences. These species include Northern California legless lizard (*Anniella pulchra*), American badger (*Taxidea taxus*), and San Joaquin kit fox (*Vulpes macrotis mutica*).

No special-status wildlife species were observed during the March 2022 field survey. However, the Project Site may provide suitable habitat to support the special-status wildlife species listed above. The following sections provide an overview of the general habitat requirements for these species and further detail on the potential for each of these species to occur in the Project Site.

4.3.3.1 Reptiles

Northern legless lizard is a predominantly subterranean lizard that occupies moist, warm, and loose soils with vegetative cover (Stebbins, 2003). It has the potential to utilize areas of the Project Site that have dense leaf litter. Refer to Section 6.0 for recommended mitigation measures for protection of Northern legless lizard during Project activities.

4.3.3.2 Mammals

American badger is a CDFW Species of Special Concern and San Joaquin kit fox is listed as federally Endangered and State Threatened. The annual grassland habitat, and presence of small mammal (ground squirrel) burrows indicate that general conditions within the Project Site are suitable for both species. No large burrows or sign (i.e., scat, tracks, prey remains, etc.) were identified during the March 2022 survey. Further, the Project Site is situated within a highly populated area and surrounded by dense residential and commercial development that creates a dispersal barrier for these species. However, because there are documented occurrences less within five miles (approximately one mile for San Joaquin kit fox), and there is generally suitable grassland habitat, there is a low potential for American badger and San Joaquin kit fox to occur within the Project Site. Refer to Section 6.0 for recommended mitigation measures for protection of these species during Project activities.

4.3.3.3 Nesting Birds

No evidence of prior bird nesting was observed within the BSA during the March 2022 field survey. Trees and vegetation present within or adjacent to the Project Site provide suitable nesting habitat for a variety of bird species. Nesting birds and their nests/eggs are protected under the federal Migratory Bird Treaty Act of 1918 and California Fish and Game Code. Nesting bird season generally occurs between February 1 and August 31. Refer to Section 6.0 for recommended mitigation measures for protection of potentially nesting birds during Project activities.

5.0 POTENTIAL IMPACTS

The proposed Project proposes to develop the entire Project Site. Grading and construction activities have the potential to impact special-status biological resources that have the potential to occur within the Project Site.

Potential impacts to special-status biological resources are construction-related, including mortality or injury from equipment operations, vehicle traffic, and loss of habitat. Project-related noise also has the potential to negatively affect nesting bird activity within or adjacent to the Project Site. Refer to Section 6.0 for recommended mitigation measures to avoid and/or minimize impacts to special-status biological resources.

6.0 **RECOMMENDED MITIGATION MEASURES**

Implementation of the following avoidance and minimization measures are recommended to protect sensitive biological resources to the greatest extent feasible during proposed Project activities:

- 1. <u>Work Timing.</u> All work activities shall be completed during daylight hours (between sunrise and sunset) and outside of rain events;
- 2. <u>Work Limits.</u> The Project impact area shall be clearly marked or delineated with stakes, flagging, tape, or signage prior to work. Areas outside of work limits shall be considered environmentally sensitive and shall not be disturbed;
- 3. <u>Vehicles and Equipment.</u> All equipment and vehicles shall be checked and maintained daily to prevent spills of fuel, oil, and other hazardous materials. A designated staging area shall be established for vehicle/equipment parking and storage of fuel, lubricants, and solvents. All fueling and maintenance activities shall take place in the staging area;
- 4. <u>Pre-Activity Nesting Bird Survey.</u> If vegetation removal (i.e., tree trimming/removal activities) is scheduled between February 1 and August 31 (general nesting bird season), nesting bird surveys shall be completed by a qualified biologist within 48 hours prior to start of work. If any active nests are discovered within or adjacent to work limits, an appropriate buffer (i.e., 500 feet for raptors and 250 feet for other birds, or at the discretion of a qualified biologist based on biological or ecological reasons) shall be established to protect the nest until a qualified biologist has determined that the nest is no longer active and/or the young have fledged;
- 5. <u>Pre-Activity Special-Status Species Survey.</u> Within 30 days of the start of construction, a qualified biologist shall conduct a pre-activity survey of the Project Site for signs of San Joaquin kit fox and American badger, including tracks, scat, or suitable burrows (burrows four inches or greater in diameter). Potential dens shall be tracked for a minimum of four nights with motion-activated cameras to determine if the burrow is actively being used by San Joaquin kit fox or badger. All potential dens shall be avoided by a minimum of 50 feet until they have been determined to be inactive. In the event San Joaquin kit fox is identified within the Project Site, the USFWS, CDFW, and all other appropriate agencies/government entities shall be contacted for further consultation.

In conjunction with the badger and San Joaquin kit fox survey, the qualified biologist will conduct a survey for Northern legless lizard. Hand search methods, including raking, will be used during the survey in areas where legless lizards are expected to be found (e.g., under shrubs/leaf litter, other vegetation, or debris). If observed, the qualified biologist will relocate the lizard to nearby suitable habitat. The qualified biologist will prepare a completion letter-report to document the pre-activity survey results.

6. <u>Oak Tree Removal.</u> If oak tree removal and/or damage is unavoidable due to Project implementation, the County may require mitigation for impacts to mature oak trees. Mitigation may require preparation of an oak tree protection and replacement plan that would provide guidance for onsite and/or offsite oak tree replacement planting. Mitigation planting replacement ratio (oak trees removed to oak trees planted) would be determined by the County.

7.0 REFERENCES

- Baldwin, Bruce G., Goldman, Douglas H., Keil, David J., Rosatti, Thomas J. 2012. The Jepson Manual: Vascular Plants of California, Second Edition. University of California Press. Berkeley, California.
- California Department of Fish and Wildlife (CDFW). 2022a. California Natural Diversity Database (CNDDB) Rare Find Paso Robles, Templeton, Adelaida, York Mountain, Estrella, Creston, San Miguel, Atascadero, Santa Margarita 7.5-minute U.S. Geological Survey (USGS) quadrangles.
- ----- 2022b. Special Animals List. State of California Natural Resources Agency Department of Fish and Wildlife Biogeographic Data Branch California Natural Diversity Database (CNDDB). October 2021.
- Calflora. 2022. Information on California plants for education, research and conservation. [web application]. 2022. Berkeley, California: The Calflora Database [a non-profit organization]. Available: <u>https://www.calflora.org/</u> (Accessed March 2022).
- California Native Plant Society, Rare Plant Program. 2022. Inventory of Rare and Endangered Plants of California (online edition, v8-03 0.39). Website http://www.rareplants.cnps.org [accessed March 2022].
- San Luis Obispo County. 2021. San Luis Obispo County Municipal Code; Title 22 –Land Use Ordinance; Article 5 – Site Development Standards; Title 22; Chapter 22.56 Tree Preservation and Chapter 22.58 Oak Woodland Ordinance. April 30, 2021.
- Sawyer, John O., Keeler-Wolf, Todd, Evens, Julie. 2009. A Manual of California Vegetation Second Edition. California Native Plant Society. Berkeley, California.
- Stebbins, Robert C. 2003. A Field Guide to Western Reptiles and Amphibians, Third Edition. Houghton Mifflin Company. New York, NY.
- United States Fish and Wildlife Service (USFWS). 2022a. Critical Habitat Portal. Retrieved from <u>https://ecos.fws.gov/ecp/report/table/critical-habitat.html.</u>
- ----- 2022b. National Wetlands Inventory (NWI). Wetlands Mapper. Retrieved from <u>https://www.fws.gov/wetlands/data/Mapper.html</u>.

APPENDIX A

Site Photographs

Photo 1. Representative view of grassland habitat and mature valley oak within the BSA (aspect northeast; 3/24/22).

Photo 2. View of site conditions within the BSA (aspect northwest; 3/24/22).

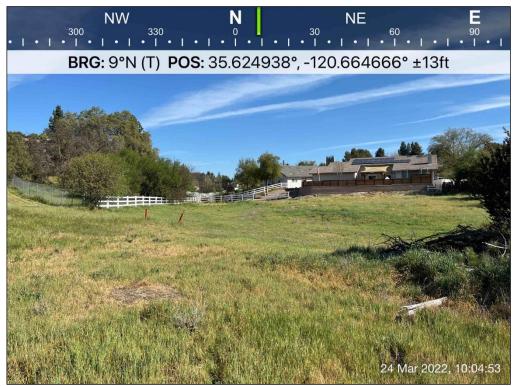


Photo 3. View of northeast portion of the BSA with level to minimally rolling topography (aspect northeast; 3/24/22).

Photo 4. Sapling coast live oak tree within the BSA (aspect northwest; 3/24/22).

APPENDIX B

Plant List

List of Plant Species Observed Rolling Hills Apartments Project, Paso Robles, CA

IS/MND Attachment 6

FAMILY	Scientific Name	Common Name	Habit	Wetland Indicator Status	Native Status	Cal-IPC Rating	Listing Status
AGAVACEAE	Chlorogalum pomeridianum var. pomeridianum	Soap plant	PH	-	Ν		
	Yucca sp.	Yucca	S	-			
ALLIACEAE	Allium sp.	Onion	PH	-			
ANACARDIACEA	Schinus molle	Pepper tree	Т	FACU		Limited	
ASTERACEAE	Baccharis pilularis	Coyote brush	S	-	Ν		
	Heterotheca grandiflora	Telegraph weed	AH	-			
	Taraxacum officinale	Common dandelion	PH	FACU			
BORAGINACEAE	Amsinckia intermedia	Common fiddleneck	AH	-	Ν		
BRASSICACEAE	Brassica nigra	Black mustard	AH	-		Moderate	
FABACEAE	Acmispon wrangelianus	Chilean trefoil	AH	-	Ν		
	Lupinus bicolor	Miniature lupine	AH	-	Ν		
	Lupinus succulentus	Succulent lupine	AH	-	Ν		
	Melilotus albus	White sweet-clover	A/BH	-			
	Vicia benghalensis	Mediterranean vetch	AH/V	-			
FAGACEAE	Quercus agrifolia	Coast live oak	Т	-	Ν		
	Quercus lobata	Valley oak	Т	FACU	Ν		
GERANIACEAE	Erodium cicutarium	Redstem filaree	AH	-		Limited	
IRIDACEAE	Iris sp.	Iris	PH	-			
LAMIACEAE	Marrubium vulgare	Horehound	PH	FACU		Limited	
MALVACEAE	Malva parviflora	Cheese-weed	AH	-			
MYRTACEAE	Eucalyptus globulus	Blue gum	Т	-			
PLANTAGINACEAE	Plantago lanceolata	English plantain	PH	FAC		Limited	
	Veronica persica	Birdeye speedwell	AH	-			
PLANTANACEAE	, Platanus racemosa	Western sycamore	Т	FAC	Ν		
PINACEAE	Pinus sp.	Pine	Т	-			
POACEAE	Avena barbata	Slender wild oats	AG	-		Moderate	
	Avena fatua	Wild oats	AG	-		Moderate	
	Bromus diandrus	Ripgut grass	AG	-		Moderate	
	Bromus hordeaceus	Soft chess	AG	FACU		Limited	
	Bromus madritensis ssp. rubens	Red brome	AG	-		High	
	Hordeum murinum ssp. leporinum	Barley	AG	FACU		5	
ROSACEAE	Prunus sp.	Cultivated almond	Т	-			
	Rosa californica	California wild rose	S	FAC	Ν		
RUBIACEAE	Galium aparine	Bedstraw	AH	FACU	N		
SALINACEAE	Populus fremontii	Fremont cottonwood	Т	-	N		

Notes:

Scientific nomenclature follows Baldwin (2012).

IS/MND Attachment 6

N - Native species

Habit definitions:

AG - Annual grass.

AH - Annual herb.

F - Fern

PG - Perennial grass.

- PH Perennial herb.
- PV Perennial vine.

S - Shrub

T - Tree

Wetland indicator status (Lichvar and Kartesz, 2016):
OBL (Obligate Wetland Plants) - Almost always occur in wetlands.
FACW (Facultative Wetland Plants) - Usually occur in wetland, but may occur in non-wetlands.
FAC (Facultative Wetland Plants) - Occur in wetlands and non-wetlands.
FACU (Facultative Upland Plants) - Usually occur in non-wetlands, but may occur in wetlands.

UPL (Upland Plants) - Almost always occur in non-wetlands.

Cal-IPC (California Invasive Plant Council) Ratings:

High - These species have severe ecological impacts on physical processes, plant and animal communities, and vegetation structure. Most are widely distributed Moderate - These species have substantial and apparent-but generally not severe-ecological impacts on physical processes, plant and animal communities, and vegetation Limited - These species are invasive but their ecological impacts are minor on a statewide level or there was not enough information to justify a higher score.

Listing Status:

- FE Federally endangered
- FT Federally threatened
- SE State endangered

ST - State threatened

- CNPS (California Native Plant Society) Ranking System; CRPR (California Rare Plant Rank):
- 1A Plants presumed extirpated in California and either rare or extinct elsewhere
- 1B Plants rare, threatened, or endangered in California and elsewhere
- 2A Plants presumed extirpated in California, but common elsewhere
- 2B Plants, rare, threatened, or endangered in California, but more common elsewhere
- 3 Plants about which more information is needed a review list
- 4 Plant of limited distribution a watch list

CRPR Threat Ranks:

- 0.1 Seriously threatened in California
- 0.2 Moderately threatened in California
- 0.3 Not very threatened in California

APPENDIX C

Wildlife List

Wildlife Species Observed within the BSA Rolling Hills Apartments Project, Paso Robles, California

IS/MND Attachment 6

Common Name	Scientific Name	Residence Status	Protected Status	Habitat
Reptiles				
Western fence lizard	Sceloporus occidentalis	R		G, D, P, S, M
Birds				
California scrub-jay	Aphelocoma californica	R	М	R, G, P
House finch	Haemorhous mexicanus	R	М	P, D, M
Mourning dove	Zenaida macroura	R	М	P, D, M
Northern mockingbird	Mimus polyglottos	R	М	S, G, D, M
Phainopepla	Phainopepla nitens	В	М	S, P, M
Red-tailed hawk	Buteo jamaicensis	R	М	G, P, M
Turkey vulture	Cathartes aura	R	М	P, M
Yellow-rumped warbler	Setophaga coronata	R	М	Р
Mammals	·	•	•	
Botta's pocket gopher	Thomomys bottae	R		R, G, P

Notes:

Fauna observed by visualizations, indirect signs (tracks, scat, skeletal remains, burros, etc.), and/or auditory cues.

Residence Status

R - Permanent resident W - Winter resident

B - Summer resident

Protected Status

- FE Federal
- FT Federal threatened species FC - Federal candidate species
- M Migratory Bird Treaty Act
- SE State endangered species
- ST State threatened species
- CS Candidate species for CESA
- CSC California Species of Special Concern
- CFP California Fully Protected Species
- BCC Bird of Conservation Concern (USFWS)

Typical Habitat

- A Aquatic
- D Developed areas
- G Grassland
- M Multiple habitats
- P Woodland
- R Riparian
- W Wetland
- C Coastal lagoons, shores, oceans
- O Rock outcrops
- S Scrub

IS/MND Attachment 6

APPENDIX D

CNDDB Results

Summary Table Report

California Department of Fish and Wildlife

California Natural Diversity Database

Query Criteria: Quad IS (Paso Robles (3512066) OR Templeton (3512056) OR Adelaida (3512067) OR York Mountain (3512057) OR Estrella (3512065) OR Creston (3512055) OR San Miguel (3512076) OR San Miguel (3512076) OR San Style='color:Red'> OR San Miguel (3512076) OR San Style='col

				Elev.		E	Elem	ent C	cc. F	Ranks	5	Populatio	on Status		Presence	•
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	Α	в	с	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
<i>Abies bracteata</i> bristlecone fir	G2G3 S2S3	None None	Rare Plant Rank - 1B.3 IUCN_NT-Near Threatened SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden USFS_S-Sensitive		80 S:1	0	0	0	0	0	1	1	0	1	0	0
Agelaius tricolor tricolored blackbird	G1G2 S1S2	None Threatened	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_EN-Endangered NABCI_RWL-Red Watch List USFWS_BCC-Birds of Conservation Concern	684 1,036	955 S:3	0	0	0	0	0	3	1	2	3	0	0
Agrostis hooveri Hoover's bent grass	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive USFS_S-Sensitive	1,000 1,000	31 S:1	0	0	0	0	0	1	1	0	1	0	0
Ammodramus savannarum grasshopper sparrow	G5 S3	None None	CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern	984 984	27 S:1	0	0	1	0	0	0	0	1	1	0	0
Anniella pulchra Northern California legless lizard	G3 S3	None None	CDFW_SSC-Species of Special Concern USFS_S-Sensitive	570 1,263	383 S:10	0	1	0	0	0	9	9	1	10	0	0
Antirrhinum ovatum oval-leaved snapdragon	G3 S3	None None	Rare Plant Rank - 4.2	720 720	16 S:1	0	0	0	0	0	1	1	0	1	0	0

				Elev.		E	Elem	ent O	cc. F	Ranks	6	Populatio	on Status		Presence	
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	A	в	с	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
<i>Antrozous pallidus</i> pallid bat	G4 S3	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern USFS_S-Sensitive WBWG_H-High Priority	600 1,050	420 S:2	0	2	0	0	0	0	1	1	2	0	0
<i>Aquila chrysaetos</i> golden eagle	G5 S3	None None	BLM_S-Sensitive CDF_S-Sensitive CDFW_FP-Fully Protected CDFW_WL-Watch List IUCN_LC-Least Concern USFWS_BCC-Birds of Conservation Concern	720 1,340	324 S:2	1	1	0	0	0	0	1	1	2	0	0
<i>Arctostaphylos luciana</i> Santa Lucia manzanita	G2 S2	None None	Rare Plant Rank - 1B.2 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_UCSC-UC Santa Cruz USFS_S-Sensitive	2,700 2,700	10 S:1	0	0	0	0	0	1	1	0	1	0	0
<i>Arctostaphylos pilosula</i> Santa Margarita manzanita	G2? S2?	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	955 1,400	58 S:4	1	0	0	0	0	3	2	2	4	0	0
Ardea herodias great blue heron	G5 S4	None None	CDF_S-Sensitive IUCN_LC-Least Concern	996 996	156 S:1	0	0	0	0	0	1	0	1	1	0	0
Aristocapsa insignis Indian Valley spineflower	G1 S1	None None	Rare Plant Rank - 1B.2	600 600	5 S:1	0	0	0	0	0	1	1	0	1	0	0
Astragalus didymocarpus var. milesianus Miles' milk-vetch	G5T2 S2	None None	Rare Plant Rank - 1B.2	1,250 1,250	16 S:2	0	0	0	0	0	2	2	0	2	0	0

				Elev.		E	Eleme	ent O	occ. F	anks	5	Populatio	on Status		Presence	
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	Α	в	с	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Athene cunicularia burrowing owl	G4 S3	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern USFWS_BCC-Birds of Conservation Concern	720 740	2011 S:3	2	1	0	0	0	0	2	1	3	0	0
Batrachoseps minor lesser slender salamander	G1 S1	None None	CDFW_SSC-Species of Special Concern IUCN_DD-Data Deficient USFS_S-Sensitive	895 1,376	8 S:5	0	0	0	0	0	5	1	4	5	0	0
Bombus caliginosus obscure bumble bee	G4? S1S2	None None	IUCN_VU-Vulnerable	1,200 1,200	181 S:1	0	0	0	0	0	1	1	0	1	0	0
Bombus crotchii Crotch bumble bee	G3G4 S1S2	None None		900 1,300	437 S:3	0	0	0	0	0	3	3	0	3	0	0
Branchinecta lynchi vernal pool fairy shrimp	G3 S3	Threatened None	IUCN_VU-Vulnerable	600 1,125	795 S:13	0	2	9	1	0	1	8	5	13	0	0
<i>Buteo regalis</i> ferruginous hawk	G4 S3S4	None None	CDFW_WL-Watch List IUCN_LC-Least Concern USFWS_BCC-Birds of Conservation Concern	995 995	107 S:1	0	1	0	0	0	0	0	1	1	0	0
<i>Calochortus obispoensis</i> San Luis mariposa-lily	G2 S2	None None	Rare Plant Rank - 1B.2 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	1,300 1,700	46 S:3	0	1	0	0	0	2	0	3	3	0	0
<i>Calochortus simulans</i> La Panza mariposa-lily	G2 S2	None None	Rare Plant Rank - 1B.3 SB_CRES-San Diego Zoo CRES Native Gene Seed Bank SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	1,000 1,600	109 S:14	0	5	2	3	0	4	4	10	14	0	0

				Elev.			Elem	ent O	cc. F	anks	5	Populatio	on Status		Presence	
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	A	в	с	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
<i>Calycadenia villosa</i> dwarf calycadenia	G3 S3	None None	Rare Plant Rank - 1B.1 SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	984 1,130	59 S:4	0	2	0	0	0	2	4	0	4	0	0
<i>Camissoniopsis hardhamiae</i> Hardham's evening-primrose	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive USFS_S-Sensitive	550 1,600	22 S:8	3	3	0	1	0	1	6	2	8	0	0
<i>Carex obispoensis</i> San Luis Obispo sedge	G3? S3?	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	1,600 2,500	29 S:3	1	0	0	0	0	2	2	1	3	0	0
Castilleja densiflora var. obispoensis San Luis Obispo owl's-clover	G5T2 S2	None None	Rare Plant Rank - 1B.2	790 1,580	69 S:5	0	1	2	0	0	2	1	4	5	0	0
<i>Caulanthus lemmonii</i> Lemmon's jewelflower	G3 S3	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	1,000 1,000	91 S:4	0	0	0	0	0	4	4	0	4	0	0
Chorizanthe breweri Brewer's spineflower	G3 S3	None None	Rare Plant Rank - 1B.3 BLM_S-Sensitive USFS_S-Sensitive	1,000 2,500	45 S:7	2	0	0	0	0	5	4	3	7	0	C
Chorizanthe rectispina straight-awned spineflower	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive USFS_S-Sensitive	600 1,900	38 S:11	2	1	1	0	0	7	7	4	11	0	С
<i>Cirsium fontinale var. obispoense</i> Chorro Creek bog thistle	G2T2 S2	Endangered Endangered	Rare Plant Rank - 1B.2 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_SBBG-Santa Barbara Botanic Garden	1,000 1,000	22 S:1	0	0	0	0	0	1	1	0	1	0	C
Cirsium occidentale var. lucianum Cuesta Ridge thistle	G3G4T2 S2	None None	Rare Plant Rank - 1B.2		9 S:1	0	0	0	0	0	1	1	0	1	0	0

California Natural Diversity Database

				Elev.		1	Eleme	ent C)cc. F	anks	5	Populatio	on Status		Presence	
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	A	в	с	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Corynorhinus townsendii Townsend's big-eared bat	G4 S2	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern USFS_S-Sensitive WBWG_H-High Priority	620 1,000	635 S:5	0		1	0	0	4	3	2	5	0	0
Delphinium parryi ssp. eastwoodiae Eastwood's larkspur	G4T2 S2	None None	Rare Plant Rank - 1B.2	900 900	15 S:1	0	0	0	0	0	1	1	0	1	0	0
Delphinium umbraculorum umbrella larkspur	G3 S3	None None	Rare Plant Rank - 1B.3 BLM_S-Sensitive USFS_S-Sensitive		95 S:2	0	0	0	0	0	2	2	0	2	0	0
<i>Dudleya abramsii ssp. murina</i> mouse-gray dudleya	G4T2 S2	None None	Rare Plant Rank - 1B.3 BLM_S-Sensitive SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden	1,230 1,600	36 S:2	0	0	0	0	0	2	0	2	2	0	0
Elanus leucurus white-tailed kite	G5 S3S4	None None	BLM_S-Sensitive CDFW_FP-Fully Protected IUCN_LC-Least Concern	1,165 1,240	180 S:2	0	2	0	0	0	0	0	2	2	0	0
<i>Emys marmorata</i> western pond turtle	G3G4 S3	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_VU-Vulnerable USFS_S-Sensitive	633 1,464	1404 S:21	2	13	3	0	0	3	6	15	21	0	0
<i>Eremophila alpestris actia</i> California horned lark	G5T4Q S4	None None	CDFW_WL-Watch List IUCN_LC-Least Concern	600 1,000	94 S:2	0	2	0	0	0	0	2	0	2	0	0
<i>Eriastrum luteum</i> yellow-flowered eriastrum	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive USFS_S-Sensitive	860 1,900	34 S:12	3	1	1	0	0	7	6	6	12	0	0
<i>Fritillaria ojaiensis</i> Ojai fritillary	G3 S3	None None	Rare Plant Rank - 1B.2 SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	1,200 1,200	49 S:1	0	0	0	0	0	1	1	0	1	0	0
<i>Horkelia cuneata var. puberula</i> mesa horkelia	G4T1 S1	None None	Rare Plant Rank - 1B.1 USFS_S-Sensitive	820 875	103 S:3	0	0	0	0	0	3	3	0	3	0	0

Commercial Version -- Dated February, 27 2022 -- Biogeographic Data Branch

Page 5 of 9

				Elev.		E	Eleme	ent O	cc. F	anks	5	Populatio	on Status		Presence	•
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	Α	в	с	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
<i>Horkelia cuneata var. sericea</i> Kellogg's horkelia	G4T1? S1?	None None	Rare Plant Rank - 1B.1 SB_UCSC-UC Santa Cruz	600 1,140	58 S:2	0	0	0	0	0	2	2	0	2	0	0
Juncus luciensis	G3	None	USFS_S-Sensitive Rare Plant Rank - 1B.2	984	37	0	0	0	0	0	3	3	0	3	0	0
Santa Lucia dwarf rush	S3	None	BLM_S-Sensitive USFS_S-Sensitive	984	S:3											
Lavinia exilicauda harengus	G4T2T4	None	CDFW_SSC-Species	250	2 S:1	0	0	0	0	0	1	0	1	1	0	0
Monterey hitch	S3	None	of Special Concern	250	5:1											
Lepidium jaredii ssp. jaredii Jared's pepper-grass	G2G3T1T2 S1S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive SB_SBBG-Santa Barbara Botanic Garden		12 S:1	0	0	0	0	0	1	1	0	1	0	0
Linderiella occidentalis California linderiella	G2G3 S2S3	None None	IUCN_NT-Near Threatened	968 1,076	508 S:5	0	4	0	0	0	1	0	5	5	0	0
<i>Malacothamnus palmeri var. palmeri</i> Santa Lucia bush-mallow	G3T2Q S2	None None	Rare Plant Rank - 1B.2 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	1,000 1,000	10 S:1	0	0	0	0	0	1	1	0	1	0	0
Masticophis flagellum ruddocki San Joaquin coachwhip	G5T2T3 S2?	None None	CDFW_SSC-Species of Special Concern	584 646	96 S:3	0	0	0	0	0	3	1	2	3	0	0
<i>Meconella oregana</i> Oregon meconella	G2G3 S2	None None	Rare Plant Rank - 1B.1	1,200 1,200	9 S:1	0	0	0	0	0	1	1	0	1	0	0
<i>Monardella palmeri</i> Palmer's monardella	G2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive USFS_S-Sensitive	1,600 1,600	24 S:2	0	0	0	0	0	2	2	0	2	0	0
<i>Monolopia gracilens</i> woodland woollythreads	G3 S3	None None	Rare Plant Rank - 1B.2		68 S:1	0	0	0	0	0	1	1	0	1	0	0

				Elev.			Elem	ent C	Occ. F	Ranks	5	Populatio	on Status		Presence	
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	A	в	с	D	x	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
<i>Navarretia fossalis</i> spreading navarretia	G2 S2	Threatened None	Rare Plant Rank - 1B.1 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_CRES-San Diego Zoo CRES Native Gene Seed Bank	1,100 1,100	82 S:1	0	0	0	0	0	1	1	0	1	0	0
Navarretia nigelliformis ssp. radians shining navarretia	G4T2 S2	None None	Rare Plant Rank - 1B.2 BLM_S-Sensitive	700 1,571	102 S:14	0	0	5	2	0	7	7	7	14	0	0
Neotoma macrotis luciana Monterey dusky-footed woodrat	G5T3 S3	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_DD-Data Deficient	988 1,700	8 S:3	2	0	0	0	0	1	3	0	3	0	0
Northern Interior Cypress Forest Northern Interior Cypress Forest	G2 S2.2	None None		2,400 2,400	22 S:1	0	0	0	0	0	1	1	0	1	0	0
Perognathus inornatus psammophilus Salinas pocket mouse	G2G3T2? S1	None None	CDFW_SSC-Species of Special Concern	740 1,225	9 S:7	3	3	0	0	0	1	7	0	7	0	0
<i>Phrynosoma blainvillii</i> coast horned lizard	G3G4 S3S4	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern	600 600	784 S:2	1	1	0	0	0	0	0	2	2	0	0
Plagiobothrys uncinatus hooked popcornflower	G2 S2	None None	Rare Plant Rank - 1B.2 USFS_S-Sensitive	1,780 1,780	14 S:1	0	0	0	0	0	1	1	0	1	0	0
Polyphylla nubila Atascadero June beetle	G1 S1	None None		800 900	4 S:3	0	0	0	0	0	3	3	0	3	0	0
<i>Progne subis</i> purple martin	G5 S3	None None	CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern	915 915	71 S:1	0	1	0	0	0	0	0	1	1	0	0
Rana boylii foothill yellow-legged frog	G3 S3	None Endangered	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_NT-Near Threatened USFS_S-Sensitive	1,010 1,010	2476 S:1	0	0	0	0	1	0	1	0	0	0	1

				Elev.		E	Eleme	ent C	cc. F	Ranks	5	Populatio	on Status		Presence	
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	Α	в	С	D	х	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Rana draytonii California red-legged frog	G2G3 S2S3	Threatened None	CDFW_SSC-Species of Special Concern IUCN_VU-Vulnerable	775 1,684	1671 S:11	1	7	1	1	1	0	5	6	10	1	0
<i>Sidalcea hickmanii ssp. anomala</i> Cuesta Pass checkerbloom	G3T1 S1	None Rare	Rare Plant Rank - 1B.2 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_SBBG-Santa Barbara Botanic Garden USFS_S-Sensitive	2,500 2,500	4 S:1	1	0	0	0	0	0	0	1	1	0	0
Spea hammondii western spadefoot	G2G3 S3	None None	BLM_S-Sensitive CDFW_SSC-Species of Special Concern IUCN_NT-Near Threatened	594 1,591	1422 S:31	2	6	10	2	0	11	16	15	31	0	0
<i>Stebbinsoseris decipiens</i> Santa Cruz microseris	G2 S2	None None	Rare Plant Rank - 1B.2 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_UCSC-UC Santa Cruz	600 600	19 S:1	0	1	0	0	0	0	0	1	1	0	0
Streptanthus albidus ssp. peramoenus most beautiful jewelflower	G2T2 S2	None None	Rare Plant Rank - 1B.2 SB_CalBG/RSABG- California/Rancho Santa Ana Botanic Garden SB_UCBG-UC Botanical Garden at Berkeley USFS_S-Sensitive		103 S:2	0	0	0	0	0	2	2	0	2	0	0
<i>Taricha torosa</i> Coast Range newt	G4 S4	None None	CDFW_SSC-Species of Special Concern	965 1,700	88 S:9		3	0	1	0	4	3	6	9	0	0
<i>Taxidea taxus</i> American badger	G5 S3	None None	CDFW_SSC-Species of Special Concern IUCN_LC-Least Concern	570 1,055	594 S:26	23	2	0	0	0	1	24	2	26	0	0
Trimerotropis occulens Lompoc grasshopper	G1G2 S1S2	None None	IUCN_EN-Endangered	900 900	8 S:1	0	0	0	0	1	0	1	0	0	1	0

Summary Table Report

California Department of Fish and Wildlife

				Elev.		I	Elem	ent C)cc. F	Rank	s	Populatio	on Status		Presence	•
Name (Scientific/Common)	CNDDB Ranks	Listing Status (Fed/State)	Other Lists	Range (ft.)	Total EO's	Α	в	С	D	x	U	Historic > 20 yr	Recent <= 20 yr	Extant	Poss. Extirp.	Extirp.
Valley Oak Woodland Valley Oak Woodland	G3 S2.1	None None		1,060 2,000	91 S:6	0	0	0	0	0	6	6	0	6	0	0
Vireo bellii pusillus least Bell's vireo	G5T2 S2	Endangered Endangered	IUCN_NT-Near Threatened NABCI_YWL-Yellow Watch List	660 710	503 S:2	1	0	0	0	0	1	1	1	2	0	0
<i>Vulpes macrotis mutica</i> San Joaquin kit fox	G4T2 S2	Endangered Threatened		641 1,049	1020 S:26		0	1	1	0	22	23	3	26	0	0

IS/MND Attachment 7

Chairperson Laura Miranda Luiseño

VICE CHAIRPERSON Reginald Pagaling Chumash

Parliamentarian Russell Attebery Karuk

SECRETARY Sara Dutschke *Miwok*

COMMISSIONER William Mungary Paiute/White Mountain Apache

Commissioner Isaac Bojorquez Ohlone-Costanoan

Commissioner Buffy McQuillen Yokayo Pomo, Yuki, Nomlaki

Commissioner Wayne Nelson Luiseño

Commissioner Stanley Rodriguez Kumeyaay

Executive Secretary Christina Snider Pomo

NAHC HEADQUARTERS 1550 Harbor Boulevard Suite 100 West Sacramento, California 95691 (916) 373-3710 <u>nahc@nahc.ca.gov</u> NAHC.ca.gov STATE OF CALIFORNIA

Gavin Newsom, Governor

NATIVE AMERICAN HERITAGE COMMISSION

February 17, 2022

Shannon Joy ECORP Consulting, Inc.

Via Email to: sjoy@ecorpconsulting.com

Re: Rolling Hills Paso Robles Project, San Luis Obispo County

Dear Ms. Joy:

A record search of the Native American Heritage Commission (NAHC) Sacred Lands File (SLF) was completed for the information you have submitted for the above referenced project. The results were <u>negative</u>. However, the absence of specific site information in the SLF does not indicate the absence of cultural resources in any project area. Other sources of cultural resources should also be contacted for information regarding known and recorded sites.

Attached is a list of Native American tribes who may also have knowledge of cultural resources in the project area. This list should provide a starting place in locating areas of potential adverse impact within the proposed project area. I suggest you contact all of those indicated; if they cannot supply information, they might recommend others with specific knowledge. By contacting all those listed, your organization will be better able to respond to claims of failure to consult with the appropriate tribe. If a response has not been received within two weeks of notification, the Commission requests that you follow-up with a telephone call or email to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from tribes, please notify me. With your assistance, we can assure that our lists contain current information.

If you have any questions or need additional information, please contact me at my email address: <u>Cody.Campagne@nahc.ca.gov</u>.

Sincerely,

Cody Campagne

Cody Campagne Cultural Resources Analyst

Attachment

Rolling Hills Multifamily

Transportation Impact Study

Prepared For: City of Paso Robles

Central Coast Transportation Consulting 895 Napa Avenue, Suite A-6 Morro Bay, CA 93442 (805) 316-0101

February 2023

Central Coast Transportation Consulting Traffic Engineering & Transportation Planning

Executive Summary

This study evaluates the potential transportation impacts of the Rolling Hills residential project located on Creston Road in the City of Paso Robles. The project includes 135 multi-family housing units estimated to generate 941 trips per weekday, including 65 trips during the AM peak hour and 79 trips during the PM peak hour. An alternative project description includes 64 single family housing units. The single-family alternative would generate less vehicle trips than the multi-family alternative.

The multi-family project is consistent with the City's General Plan and would have a less-than-significant impact to vehicle miles traveled (VMT).

With construction of a single lane roundabout at Creston Road/Rolling Hills Road (#2) all study locations would operate acceptably under Existing Plus Project Conditions. Under Cumulative Conditions, the intersection would operate acceptably; however, westbound queues are expected to reach the Creston Road/Melody Drive (#3) intersection during peak periods. However, no additional lanes are recommended as the entire corridor experiences congestion during the school drop off and pick up and congestion is minimal during off peak times.

We recommend the Creston Road driveway be limited to left-in, right-in, right-out only. We also recommend a small median in the two-way left turn lane to allow left turns into the site and the driveway across Creston Road but restrict outbound left turns on to Creston Road.

We also recommend the project construct the following improvements consistent with the Creston Road Complete and Sustainable Streets Study:

- Extend curb, gutter, and sidewalk improvements on the north side of Creston Road from project frontage to Orchard Drive.
- Install curb ramps and bulbouts on the north and south side of Creston Road at the existing Orchard Drive crosswalk.
- Replace existing school crossing signage at Orchard Drive with CAMUTCD compliant signage. Replace overhead sign with S1-1 sign, replace pole mounted sign with SW24-2(CA) sign, and install SW-24-3 (CA) sign in advance of the crosswalk.
- Replace existing overhead flashing beacons with overhead and pole mounted rectangular rapid flashing beacons (RRFB).

The City's Pedestrian and Bicycle Master Plan includes buffered Class II bike lanes on Creston Road and Class II bike lanes on Rolling Hills Road adjacent to the project site. We recommend the project frontage improvements incorporate the width to accommodate the future Class II facilities.

Contents

1.0	Introduction	
2.0	CEQA Transportation Analysis	6
3.0	Local Transportation Analysis	9
4.0	References	
Table 1:	City of Paso Robles Mobility Deficiency Criteria	9
Table 2:	Project Trip Generation	
Table 3:	Existing Weekday Plus Project Intersection Levels of Service	14
Table 4:	Existing Weekday Plus Project Intersection Queues	
Figure 1	: Site Plan	5
Figure 2	2: Existing Volumes and Lane Configurations	
Figure 3	Project Trip Distribution and Assignment	
Figure 4	: Existing Plus Project Volumes	

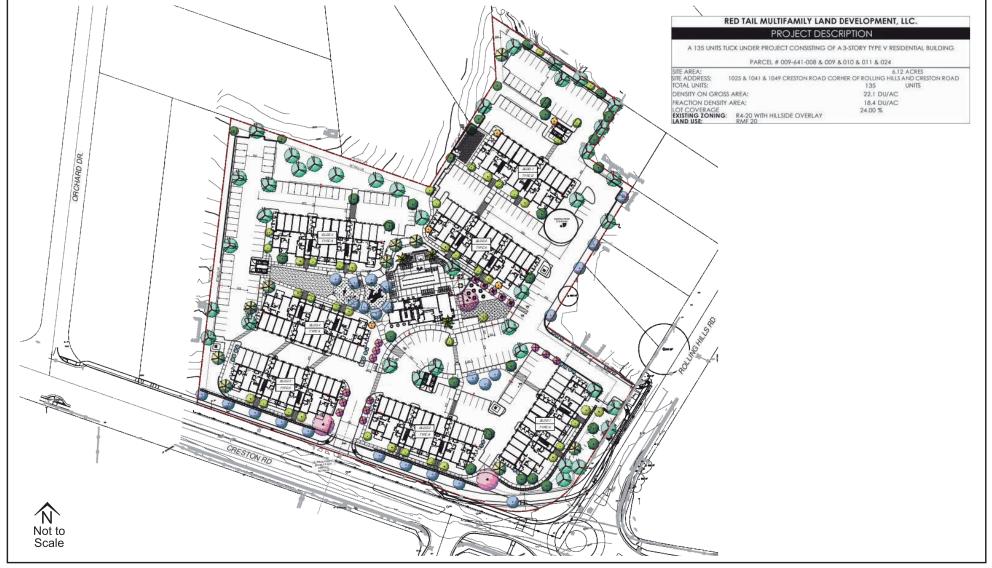
Appendix A: Traffic Counts Appendix B: Intersection Calculation Sheets Appendix C: Signal Warrant

1.0 Introduction

This study evaluates the potential transportation impacts of the Rolling Hills residential development located on Creston Road just west of Rolling Hills Road in the City of Paso Robles. The project includes two alternatives including 135 multi-family housing units or 64 single-family housing units. The multi-family alternative would generate more vehicle trips and was analyzed in this report. The project site plan is shown on **Figure 1**.

The following intersections were analyzed during the weekday AM and PM peak hour:

- 1. Creston Road/Orchard Drive
- 2. Creston Road/Rolling Hills Road
- 3. Creston Road/Melody Drive
- 4. Creston Road/Shopping Center (Williams Plaza)
- 5. Creston Road/Golden Hill Road
- 6. Golden Hill Road/Rolling Hills Road


The study locations were evaluated under these scenarios:

- Existing Conditions reflect recent traffic counts and the existing transportation network.
- Existing Plus Project adds project-generated traffic to Existing Conditions volumes.

Each scenario is described in more detail in the appropriate chapter. The proposed project does not require a General Plan amendment and cumulative analysis is not required.

This study also evaluates vehicle miles traveled (VMT), safety, emergency access, and consistency with regional plans as required under the California Environmental Quality Act (CEQA).

Source: Architects Orange

February 2023

2.0 CEQA Transportation Analysis

This section presents analysis relevant to the California Environmental Quality Act (CEQA), notably analysis of the existing setting, vehicle miles traveled (VMT), emergency access, and safety.

The City's 2022 Transportation Impact Analysis (TIA) Guidelines Supplement provides VMT and safety thresholds consistent with guidance from the State Office of Planning and Research (OPR). Residential projects may have a significant impact if the residential VMT per capita exceeds 85 percent of the regional average. Residential VMT captures all home-based productions (all trips to and from homes).

Projects may have a significant impact if they exacerbate an existing high-priority or similar safety location, introduce a design feature that substantially increases hazards, or propose features that do not meet City design standards.

2.1 EXISTING CIRCULATION NETWORK

The existing roadways in the project vicinity are described below.

- *Creston Road* is an arterial with two travel lanes, Class II bike lanes, and a sidewalk and parking on the south side adjacent to the project. East of Rolling Hills Road, the roadway transitions to four travel lanes with a sidewalk on both sides, Class II bike lanes, and no on-street parking. The speed limit is 35 miles per hour (MPH) with supplemental 25 MPH school signage.
- Orchard Drive is a two-lane local road with minimal striping, no bikeways, and no posted speed limit.
- Rolling Hills Road is a two-lane collector with a center left-turn lane and continuous sidewalk on the eastside, and no marked bikeways. The posted speed limit is 40 MPH.
- *Melody Drive* is a two-lane collector with sidewalks on both sides, on-street parking, and no bikeways. The posted speed limit is 25 MPH.
- *Golden Hill Road* is an arterial with three to four travel lanes, a center turn lane, and intermittent sidewalks and Class II bike lanes in the project vicinity. The speed limit is 45 MPH north of Creston Road.

Marked crosswalks and pedestrian signals are provided on all legs of the Creston Road/Melody Drive (#3) and Creston Road/Golden Hill Road (#5) signalized intersections. Additionally, there is an uncontrolled crosswalk on Creston Road at Orchard Drive.

The Paso Express provides fixed route and dial-a-ride transit service for the City of Paso Robles. The fixed route service operates Routes A and B, which run clockwise and counterclockwise, respectively. The stops at the project site are located on Creston Road at the intersection with Melody Drive for both the A and B routes. The San Luis Obispo Regional Transit Authority (RTA) provides regional fixed-route service throughout San Luis Obispo County. Route 9 serves the North County region, providing regional access between San Luis Obispo, Santa Margarita, Atascadero, Templeton, and Paso Robles. The closest stop to the project site is located over a mile away at the Paso Robles transit center at the intersection of Pine Street and 8th Street, which is served on weekdays with hourly service.

2.2 VEHICLE MILES TRAVELED (VMT)

The SLOCOG Travel Demand Model was applied to estimate VMT. The regional average residential VMT per capita is 13.40, and 85 percent of this level corresponds to a threshold of 11.39 residential VMT per capita. The project was added to the SLOCOG model in an existing Traffic Analysis Zone (TAZ) which also includes

existing single family residences. With the project the project TAZ generates 6.22 residential VMT per capita, well below the threshold. The project would have a less-than-significant impact to VMT.

2.3 EMERGENCY ACCESS

The project proposes access at two entryways with one approach from Creston Road and one from Rolling Hills Road. Emergency access is adequate as proposed.

2.4 COLLISIONS

Creston Road/Golden Hill Road (#5) was included in the City's Local Road Safety Plan as a high incident location. There is a pattern of drivers making left-turns failing to yield to oncoming traffic and rear-end collisions from unsafe speeds. Recommendations include:

- Replace or upgrade signal backplates with retroreflective border.
- Upgrade 8" signal heads to 12" signal heads.
- Install near side signal head on east corner luminaire pole
- Install Signal Warning Beacon on southbound Golden Hill Road approach.
- Implement adaptive signal controls with advanced dilemma zone detection.

In addition, we recommend the City review the signal timing including pedestrian, bicycle, yellow, and red clearance intervals.

Collision data was obtained from the Statewide Integrated Traffic Records System (SWITRS) for 2017 through 2021 for the remainder of the unsignalized study intersections as described below.

- Creston Road/Orchard Drive (#1): Four collisions occurred near the intersection, three were rear end due to unsafe speed and one was an auto right of way collision during rainy conditions.
- Creston Road/Rolling Hills Road (#2): Three collisions occurred near the intersection due to an auto right-of-way violation, driving under the influence, and unsafe speed.
- Creston Road/Shopping Center (#4): Two auto right of way collisions occurred near the driveway on Creston Road.
- Golden Hill Road/Rolling Hills Road (#6): Six collisions were reported at the intersection. Four broadside collisions occurred with an eastbound driver on Rolling Hills Road and a southbound driver on Golden Hill Road, one of these was an eastbound driver failing to yield to a southbound cyclist.

At least four or five collisions, susceptible to correction by installation of multi-way stop control, must occur during a 12-month period to meet California Manual on Uniform Traffic Control Devices (CAMUTCD) guidelines for installation.

Twelve collisions occurred near the signalized intersection of Creston Road/Melody Drive (#3). Five broadside collisions occurred due to auto right-of-way violations and four rear end collisions occurred due to unsafe speeds. The westbound left turn phase does not meet the recommendations for protective phasing. Reflective borders, signal timing updates, and video detection should be considered.

Installation of a roundabout at Creston Road/Rolling Hills Road (#2) should reduce collisions at the intersection and slow corridor speeds.

2.5 **RTP CONSISTENCY**

SLOCOG's 2019 Regional Transportation Plan (RTP) serves as the blueprint for regional development patterns. It includes visions, goals, and policies relevant to the proposed project. These include support for a

mix of housing options in new residential developments and support for infill development near existing transit services and activity centers. The proposed project is on an infill site near goods and services.

2.6 CRESTON ROAD COMPLETE AND SUSTAINABLE STREETS STUDY

The Creston Road Complete and Sustainable Streets Project utilized a community-driven effort to develop a plan for creating a vibrant, pedestrian and bicycle-friendly, green street environment for residents, businesses, and visitors. The plan included the following recommendations:

- Trigo Lane to Orchard Drive:
 - o Addition of RRFBs at the crosswalks at Trigo Lane, Ivy Lane, and Orchard Drive
 - o Installation of continuous painted bike lanes and crossing lanes
 - o Additional and increased pedestrian sidewalk area, mainly around intersections
 - o Incorporation of a two-way center turn lane
 - o Allocation of on-street parking between Ivy Lane and Orchard Drive
- Orchard Drive to Melody Drive:
 - o Addition of a roundabout at Rolling Hills Road and Creston Road intersection
 - o Increased sidewalk area around roundabout
 - o New pedestrian crosswalks at Rolling Hills Road

With installation of a roundabout at Creston Road/Rolling Hills Road (#2) and the recommended frontage improvements, the project is consistent with the Creston Road Complete and Sustainable Streets Study.

In addition, the proposed roundabout is consistent with the City's Circulation Element.

3.0 Local Transportation Analysis

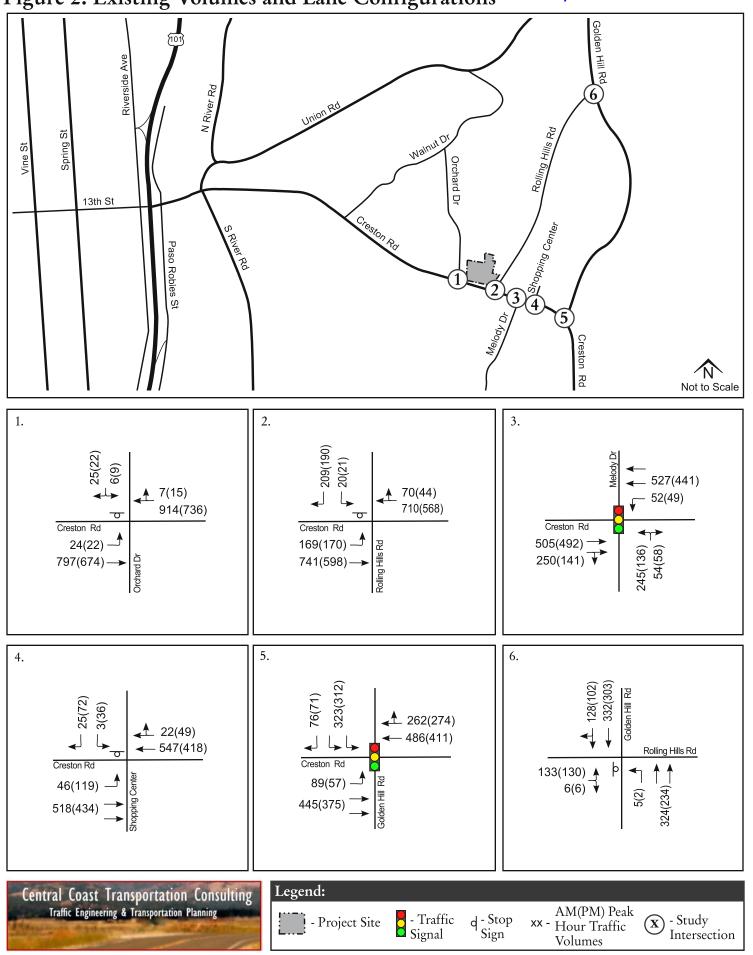
The remaining sections of this report present additional analysis relevant to City transportation policy.

3.1 DEFICIENCY THRESHOLDS

The City's TIA Guidelines provide criteria for identifying mobility deficiencies reflecting the City's Circulation Element Goals as shown in **Table 1**.

J	
City of Paso	Robles Mobility Deficiency Criteria ¹
Study Element	Deficiency Determination
On-site Circulation and Parking	Project designs fail to meet City or industry standard guidelines, fail to provide adequate truck access, will result in unsafe conditions, or will create parking demand or supply above code requirements.
Pedestrian, Bicycle, Transit Facilities	Project fails to provide safe and accessible connections, conflicts with adopted plans, or adds trips to facility that doesn't meet current design standards.
Traffic Operations	Project causes vehicle queues that exceed turn pocket lengths, increases safety hazards, causes stop-controlled intersection to operate below LOS D and meet signal warrants, or causes vehicle demand greater than the roadway capacity.
1. Summary based on Table 5 of City's Tran	sportation Impact Study Guidelines.

Table 1: City of Paso Robles Mobility Deficiency Criteria


3.2 EXISTING TRAFFIC VOLUMES

Intersection turning movement counts were collected at the study intersections in August 2022 during the weekday AM and PM peak hours when local schools were in session. The existing intersection volumes and lane configurations are shown in **Figure 2**. The traffic count data sheets are included as **Appendix A**.

The Creston Road corridor currently experiences congestion during the school pick up and drop off periods.

Intersection operations are discussed in detail under the Existing Plus Project Conditions section of this report.

Figure 2: Existing Volumes and Lane Configurations

February 2023

Rolling Hills

3.3 EXISTING PLUS PROJECT CONDITIONS

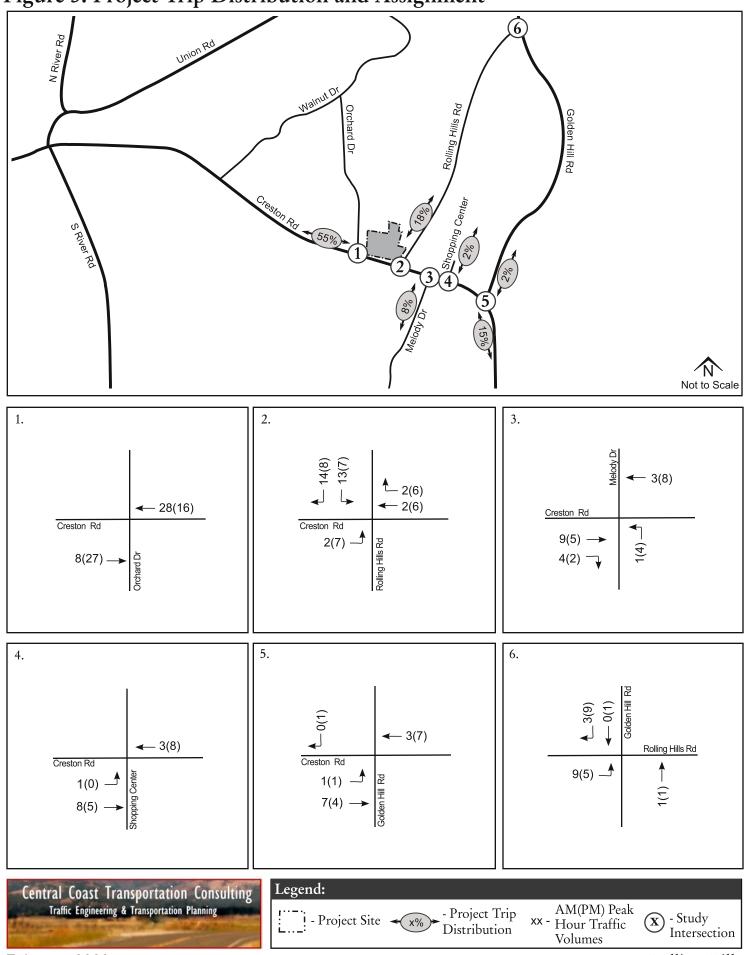
This section evaluates the effects of the proposed project on the surrounding transportation network. The amount of project traffic affecting the study locations is estimated in three steps: trip generation, trip distribution, and trip assignment. Trip generation refers to the total number of trips generated by the site. Trip distribution identifies the general origins and destination of these trips, and trip assignment specifies the routes taken to reach these origins and destinations.

3.3.1 Project Trips

Project trip generation was estimated using data from the Institute of Transportation Engineers' (ITE) *Trip Generation Manual* 11th Edition as shown in **Table 2**.

]	Project 7	Frip Ge 1	neration				
		Daily	AN	1 Peak H	our	PN	A Peak H	lour
Land Use	Size	Total	In	Out	Total	In	Out	Total
Multifamily Housing ¹	135 DU	941	15	50	65	50	29	79
Net New	Vehicle Trips	941	15	50	65	50	29	79
Use.								
1. ITE LU Code #220, M	ulti-Family (Low-	Rise). Fitte	ed curve e	quations u	sed.			
Source: ITE Trip Generat	ion Manual, 11th	Edition.						

Table 2: Project Trip Generation


The project is estimated to generate 941 trips per weekday, including 65 trips during the AM peak hour and 79 trips during the PM peak hour. Project trip distribution and assignment was derived using the SLOCOG model and is shown on **Figure 3**.

3.3.2 Existing Plus Project Intersection Operations

The study intersections were analyzed using Synchro 11 and the Highway Capacity Manual (HCM) 6 edition methodology. **Table 3** presents the LOS for the study intersections under Existing and Existing Plus Project Conditions and **Table 4** summarizes the key queues. Existing Plus Project volume are shown on **Figure 4**. Detailed calculation sheets are included in **Appendix B**. Note that the project proposes a single-lane roundabout at the Creston Road/Rolling Hills Road (#2) intersection, but it was evaluated under its current stop-control in the following tables.

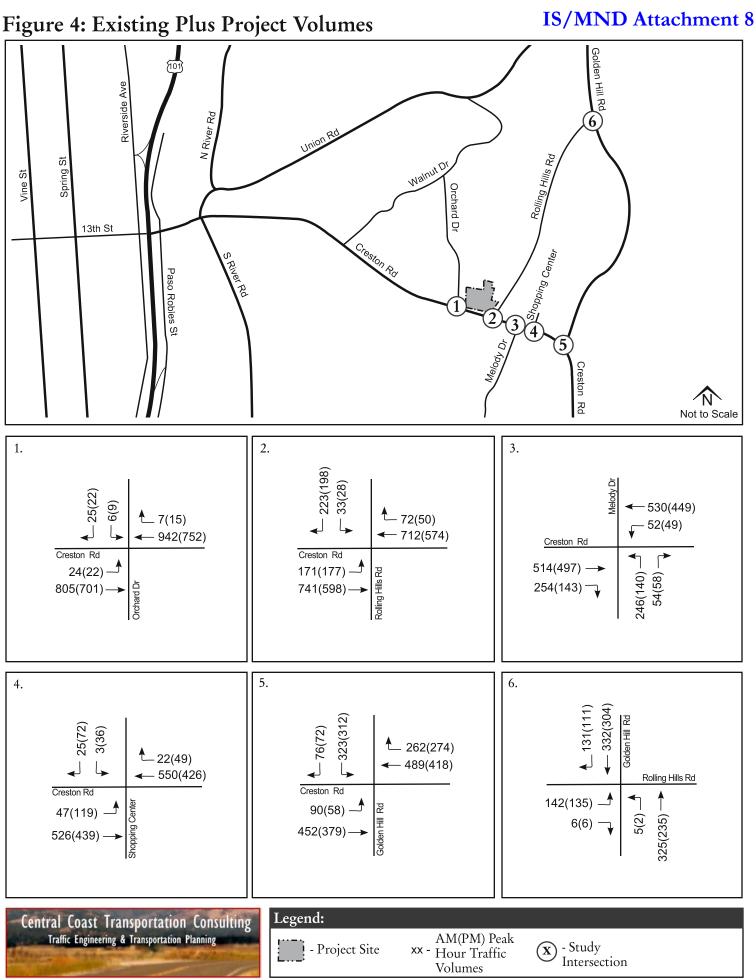

IS/MND Attachment 8

Figure 3: Project Trip Distribution and Assignment

February 2023

Rolling Hills

February 2023

Rolling Hills

Existing and I	Existing Plu	s Project Lo	evels of Se	rvice	
	Peak Hour	Exist	ting	Existing +	Project
Intersection	Peak Hour	D elay ¹	LOS	Delay ¹	LOS
1 Cusator Rd/ Outboard Dr	AM	0.5(21.9)	-(C)	0.5(22.6)	-(C)
1. Creston Rd/ Orchard Dr	PM	0.5(16.7)	-(C)	0.5(17.1)	-(C)
2 Currente a D J / D all'una LI'lla D J	AM	6(41.7)	-(E)	8.9(60.3)	-(F)
2. Creston Rd/ Rolling Hills Rd	PM	4.5(26.2)	-(D)	5.4(30.6)	-(D)
	AM	8.4	А	8.4	А
3. Creston Rd/ Melody Dr	PM	5.8	А	5.9	А
A Constant D 1/ Share in a Constant	AM	0.7(12.1)	-(B)	0.7(12.2)	-(B)
4. Creston Rd/ Shopping Center	PM	2.4(15.5)	-(C)	2.4(15.7)	-(C)
5 Creator Bd/Colder Hill Bd	AM	19.3	В	19.3	В
5. Creston Rd/ Golden Hill Rd	PM	15.3	В	15.2	В
Colden IIII Dd / Dolling IIII-Dd	AM	2.4(15.7)	-(C)	2.6(16.1)	-(C)
6. Golden Hill Rd/ Rolling Hills Rd	PM	2.6(14.5)	-(B)	2.6(14.7)	-(B)

Table 3: Existing Weekday Plus Project Intersection Levels of Service

1. HCM 6th average control delay in seconds per vehicle. For two-way stop controlled (TWSC) intersections the worst approach's delay is reported in parentheses next to the overall delay. HCM 2000 used for yield controlled intersections.

2. Intersection was assumed to be two-way stop controlled under project conditions.

Unacceptable operations shown in bold text.

Existing	and Existin	g Plus Proje	ct Intersect	ion Queues	
Intersection	Movement	Storage	Peak	95th per	centile Queue
Intersection	Movement	Length (ft)	Hour	Existing	Existing+Project
1. Creston Rd/Orchard Dr	SBL/R		AM	13	13
1. Creston Rd/ Orenard Di	SDL/ K	_	PM	8	8
	SBL		AM	45	83
2. Creston Rd/Rolling Hills Rd	SDL	-	PM	33	48
2. Creston Rd/ Ronnig This Rd	SBR	100	AM	108	125
	SDK	100	PM	65	73
3. Creston Rd/Melody Dr	WBL	115	AM	33	33
5. Creston Rd/ Melody Di	WDL	115	PM	30	30
	SBL	200	AM	3	3
4. Creston Rd/Shopping Center	SDL	200	PM	18	18
4. Creston Rd/ Shopping Center	SBR	60	AM	3	3
	SDK	00	PM	10	10
5. Creston Rd/Golden Hill Rd	EBL	125	AM	133	134
5. Creston Rd/ Golden Fill Rd	EDL	125	PM	84	85
6. Golden Hill Rd/Rolling Hills Rd	EB		AM	35	38
o. Golden Hill Kd/ Kolling Hills Kd	ED	-	PM	30	33
1. Queue length in feet that would not b	e exceeded 95 p	percent of the tir	ne.		
# 95th percentile volume exceeds capaci	ty, queue may l	e longer.			
m Volume for 95th percentile queue is n	netered by upstr	ream signal.			
Bold indicates queue length longer th	an storage ler	gth.			

Table 4: Existing Weekday Plus Project Intersection Queues

The following City intersections operate below LOS D or show queue deficiencies:

- Creston Road/Rolling Hills Road (#2): During the AM peak hour, the intersection operates at LOS E without the project and LOS F with the project and the current side-street-stop control. In addition, the southbound right turn queue exceeds the turn pocket length under Existing Conditions with and without the project during the AM peak hour. Modifying the intersection to a single lane roundabout as proposed by the project would improve operations to LOS C or better during both peak hours and eliminate queue deficiencies. A traffic signal is warranted under Existing Conditions and would also operate acceptably with acceptable queues with an additional westbound approach lane. The roundabout is preferred in the Creston Corridor Plan. The signal warrant is included in **Appendix C**.
- Creston Road/Golden Hill Road (#5): The eastbound left turn queue exceeds the turn pocket length under Existing Conditions with and without the project during the AM peak hour. The project would exacerbate the queue by less than one vehicle and the impact would be less than significant. Additional storage is also available in the bay taper to accommodate the queues.

Although analysis of Cumulative Conditions was not required in this report, operations at Creston Road/Rolling Hills Road (#2) were estimated to determine future right-of-way needs. Under Cumulative Conditions, westbound queues would be expected to reach or exceed the Creston Road/Melody Drive (#3)

intersection during peak periods. However, no additional lanes are recommended as the entire corridor experiences congestion during the school drop off and pick up and congestion is minimal during off peak times.

3.4 SITE ACCESS AND ON-SITE CIRCULATION

The American Association of State Highway and Transportation Officials (AASHTO) states that, "ideally, driveways should not be located within the functional area of an intersection or the influence area of an adjacent driveway." In addition, the City's Circulation Element calls for limited access on arterial roadways consistent with access management best practices.

The project proposes a driveway on Creston Road and a driveway on Rolling Hills Road. We recommend full access at the Rolling Hills Road driveway. We recommend the Creston Road driveway be limited to left-in, right-in, right-out. Additional uncontrolled left turns to Creston Road are not recommended consistent with access management best practices. To accommodate left turns into the site on Creston Road and reduce conflicts points on the corridor, a short median in the two-way left turn lane is recommended. The median would allow left turns into the site and the driveway across Creston Road but would restrict outbound left turns.

We also recommend the project construct the following improvements consistent with the Creston Road Complete and Sustainable Streets Study to provide an accessible connection to area schools:

- Extend curb, gutter, and sidewalk improvements on the north side of Creston Road from project frontage to Orchard Drive.
- Install curb ramps and bulbouts on the north and south side of Creston Road at the existing Orchard Drive crosswalk.
- Replace existing school crossing signage at Orchard Drive with CAMUTCD compliant signage. Replace overhead sign with S1-1 sign, replace pole mounted sign with SW24-2(CA) sign, and install SW-24-3 (CA) sign in advance of the crosswalk.
- Replace existing overhead flashing beacons at Orchard Drive with overhead and pole mounted rectangular rapid flashing beacons (RRFB).

The study also contained a median in the two-way left turn lane at the Orchard Drive crosswalk. We do not recommend installing the median to continue to allow for two-stage gap acceptance for southbound left turn drivers at Orchard Drive.

The City's Pedestrian and Bicycle Master Plan includes buffered Class II bike lanes on Creston Road and Class II bike lanes on Rolling Hills Road adjacent to the project site. We recommend the project frontage improvements incorporate the width to accommodate the future Class II facilities.

IS/MND Attachment 8

4.0 References

- American Association of State Highway and Transportation Officials (AASHTO). 2018. A Policy on Geometric Design.
- California Department of Transportation. May 2020. Vehicle Miles Traveled-Focused Transportation Impact Study Guide.

_____. 2020. Highway Design Manual.

- _____. 2014, Revision 6. California Manual on Uniform Traffic Control Devices.
- California Governor's Office of Planning and Research (OPR). December 2018. Technical Advisory on Evaluating Transportation Impacts in CEQA.

City of El Paso De Robles. 2017. Bicycle & Pedestrian Master Plan.

_____. 2018. General Plan Circulation Element.

_____. 2013. Transportation Impact Analysis Guidelines.

_____. 2022. Transportation Impact Analysis Guidelines Supplement.

Institute of Transportation Engineers (ITE). 2021. Trip Generation Manual, 11th Edition.

San Luis Obispo Council of Governments. 2019. Regional Transportation Plan.

The Natelson Company, Inc. 2001. Employment Density Study Summary Report.

Transportation Research Board. 2016. Highway Capacity Manual, 6th Edition.

Appendix A: Traffic Counts

												-IS,	/M	ND-	Atta	tehme:
		٦	310 N. Irv	raffic Da t vin Street - CA 93230					Tu	rnir	ng N	IOV		ent	Rep	port
<u>Metro Traffic</u>	<u>Jala </u>		800-975-0	6938 Phor rotrafficdat										895 Nap	oa Avenue	o nsulting , Suite A-6 CA 93442
L	OCATION		Orchard	d Dr @ Cre	eston Rd			LA				35.6242				
	COUNTY		Sa	n Luis Obi	spo		-					-120.6667			_	
COLLECTI	ON DATE		Thursda	ay, August	25, 2022		-	w	EATHER			Clear			_	
		North	bound			South	bound			East	ound			West	bound	
Time 7:00 AM - 7:15 AM	Left 0	Thru 0	Right 0	Trucks 0	Left 1	Thru 0	Right 0	Trucks 0	Left 0	Thru 65	Right 0	Trucks	Left 0	Thru 98	Right 2	Trucks 3
7:15 AM - 7:30 AM 7:30 AM - 7:45 AM	0	0	0	0	2	0	3 5	0	0	102 192	0	0 3	0	168 281	2 1	2
7:45 AM - 8:00 AM 8:00 AM - 8:15 AM	0	0	0	0	1 1	0	10 6	0	8 13	219 248	0	5 2	0	236 233	1	4 9
8:15 AM - 8:30 AM 8:30 AM - 8:45 AM	0	0	0	0	2	0	4	0	2	138 86	0	2	0	164 128	1	2 3
8:45 AM - 9:00 AM TOTAL	0	0 0	0 0	0	2 12	0 0	1 31	0 0	1 28	87 1137	0	3 27	0	116 1424	2 13	5 29
			bound				bound				ound				bound	
Time 2:00 PM - 2:15 PM	Left 0	Thru 0	Right 0	Trucks 0	Left 3	Thru 0	Right 2	Trucks 1	Left 1	Thru 120	Right 0	Trucks 3	Left 0	Thru 118	Right 2	Trucks 0
2:15 PM - 2:30 PM 2:30 PM - 2:45 PM	0	0	0	0	2	0	3	0	1 3	121 135	0	1 0	0	152 233	2	2 5
2:45 PM - 3:00 PM 3:00 PM - 3:15 PM	0	0	0	0	4	0	7 11	1 0	8	153 223	0	0	0	204 141	4	2 3
3:15 PM - 3:30 PM 3:30 PM - 3:45 PM	0	0	0	0	2	0	0	0	2	163 178	0	2	0	158 174	4 5	7 2
3:45 PM - 4:00 PM 4:00 PM - 4:15 PM	0	0	0	0	1	0	4	0	2	182 175	0	1 2	0	205 154	0	2
4:15 PM - 4:30 PM 4:30 PM - 4:45 PM	0	0	0	0	5	0	1	0	3	177	0	4	0	165 178	1	0 2
4:45 PM - 5:00 PM	0	0	0	0	3	0	2	0	3	186 160	0	1 2	0	141 173	2	2
5:00 PM - 5:15 PM 5:15 PM - 5:30 PM	0	0	0	0	1	0	1	0	1 2	183	0	1	0	152	4	0
5:30 PM - 5:45 PM 5:45 PM - 6:00 PM	0	0	0	0	2 1	0	2 0	0	2 1	140 151	0	1 0	0	134 116	3 4	1 0
TOTAL	0	0 N a stille	0	0	33	0	43	2	46	2609	0	24	0	2598	46	29
PEAK HOUR	Left	Thru	bound Right	Trucks	Left	Thru	bound Right	Trucks	Left	Thru	ound Right	Trucks	Left	Thru	bound Right	Trucks
7:30 AM - 8:30 AM	0	0	0	0	6	0	25	0	24	797	0	12	0	914	7	16
2:30 PM - 3:30 PM	0	0	0	0	9	0	22	1	22	674	0	6	0	736	15	17
	PHF	Trucks					<u>c</u>	orchard F	<u>Rd</u>	<u>PHF</u>	_					
АМ	0.878	1.6%				PM	22	0	9	0.596						
РМ	0.950	1.6%]			AM	25	0	6	0.705						
		<u> </u>	PHF	0.75	0.786		┥		Ļ		АМ	РМ				
				22	24			•			7	15				
	C	Creston F	<u>Rd</u>	674	797		•			←	914	736	C	Creston F	Rd	
	-		-	0	0			North		` 	0	0			-	
				PM	AM					F			DUE			
						<u>PHF</u>			ſ]	0.816	0.792	<u>PHF</u>			
						#####	0	0	0	AM						
						#####	0	0	0	РМ						
															Р	age 1 of 3

8

																.ehm
▕▁▀▃▁▀▋┉		- I		raffic Da					Tu	rnir	ng N	lov	eme	ent	Rep	ort
Metro Traffic [nc. I		CA 93230								Prepared Ce		st Transp	ortation C	onsulting
				6938 Pho rotrafficdat										895 Nap	a Avenue, lorro Bay,	Suite A-6
LC	OCATION	l	Orchard	d Dr @ Cre	eston Rd		-		TITUDE						-	
	COUNTY		Sa	ın Luis Obi	spo		-	LON	IGITUDE			-120.6667	,		-	
COLLECTI	ON DATE		Thursda	ay, August	25, 2022		-	w	EATHER			Clear			-	
Time	Nor Left	thbound E Thru	Bikes Right	N.Leg Peds	Sou Left	thbound I Thru	Bikes Right	S.Leg Peds	Eas Left	tbound B Thru	ikes Right	E.Leg Peds	We: Left	stbound E	likes Right	W.Leg Peds
7:00 AM - 7:15 AM 7:15 AM - 7:30 AM	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	1 0	0	0
7:30 AM - 7:45 AM 7:45 AM - 8:00 AM	0	0	0	0 2	0	0	0	0	0	0	0	0 2	0	2	0	0
8:00 AM - 8:15 AM 8:15 AM - 8:30 AM	0	0	0	4	0	0	0	0	0	1	0	1	0	0	0	0
8:30 AM - 8:45 AM 8:45 AM - 9:00 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0 thbound E	0 Bikoo	8	0	0 thbound B	0 Bikee	0	0	2 tbound B	0	3	0	7 stbound E	0	0
Time 2:00 PM - 2:15 PM	Left	Thru 0	Right 0	N.Leg Peds 1	Left 0	Thru 0	Right 0	S.Leg Peds 0	Left 0	Thru 0	Right	E.Leg Peds 0	Left 0	Thru 0	Right	W.Leg Peds 0
2:15 PM - 2:30 PM 2:30 PM - 2:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
3:00 PM - 3:15 PM 3:15 PM - 3:30 PM	0	0	0	3 0	0	0	0	0	0	4	0	1 0	0	0	0	0
3:30 PM - 3:45 PM 3:45 PM - 4:00 PM	0	0	0	0 3	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM - 4:15 PM 4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4:30 PM - 4:45 PM 4:45 PM - 5:00 PM	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM 5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM 5:45 PM - 6:00 PM	0	0	0	0 1 0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	12	0	0	0	0	0	5	0	3	0	1	0	0
PEAK HOUR	Nor Left	thbound E Thru	Bikes Right	N.Leg Peds	Sou Left	thbound I Thru	Bikes Right	S.Leg Peds	Eas Left	tbound B Thru	ikes Right	E.Leg Peds	We: Left	stbound E Thru	Bikes Right	W.Leg Peds
7:30 AM - 8:30 AM	0	0	0	6	0	0	0	0	0	1	0	3	0	5	0	0
2:30 PM - 3:30 PM	0	0	0	3	0	0	0	0	0	4	0	1	0	1	0	0
			1													
	Bikes	Peds					<u>0</u>	rchard F	<u>Rd</u>	Peds <>						
AM Peak Total	6	9				РМ	0	0	0	3						
	-		1													
PM Peak Total	5	4			-	AM	0	0	0	6						
			Peds <>	0	0		┢		Ŀ		AM	РМ				
			ă				•		,							
				0	0						0	0				
	C	Creston F	54	4	1						5	1	C	Creston F	84	
	-							North				•	-			
				0	0			North			0	0				
				PM	AM		4			•	2	4	\$			
						Peds <>					3	1	Peds			
						0	0	0	0	AM						
						0	0	0	0	РМ						
								<u>0</u>		l					P	age 2 of 3

	Metro Traffic Data Inc. 310 N. Irwin Street - Suite 20	Turnir	ng Movement R	
<u>Metro Traffic Data Inc.</u>	Hanford, CA 93230 800-975-6938 Phone/Fax www.metrotrafficdata.com			ion Consulting enue, Suite A-6 Bay, CA 93442
LOCATION	Orchard Dr @ Creston Rd	N/S STREET	Orchard Rd	
COUNTY	San Luis Obispo	E/W STREET	Creston Rd	
COLLECTION DATE	Thursday, August 25, 2022	WEATHER	Clear	
	N/A	CONTROL TYPE	One-Way Stop	
CYCLE TIME	qots Y	CONTROL TYPE COMMENTS		
				Page 3 of 3

Bit Address of the second se
www.metorafficedat.com LATITUDE 35.6235 COUNT San Luis Oblego 120.641 COUNT San Luis Oblego 120.641 COLECTION DATE Tursday, August 25, 2022 WEATHER Clear
COLLECTION DATE Turday, August 25, 202 MEATHE
Time Left Thru Right Tucks Left Right Tucks Left Right
Time Left Thru Right Trucks Left Thru Right Trucks <t< td=""></t<>
P200 AM -7:15 AM 0 0 0 0 0 0 0 34 0 14 58 0 5 0 73 10 3 7:15 AM -7:45 AM 0 0 0 0 0 0 0 14 0 17 86 0 22 0 123 2 2 7:36 AM -7:45 AM 0 0 0 0 4 0 63 0 37 183 0 3 0 216 6 2 7:36 AM -8:00 AM 0 0 0 0 4 0 39 0 44 110 0 2 0 126 11 12 72 0 55 0 102 4 2 8:30 AM -8:30 AM 0 0 0 0 0 0 34 2 239 101 0 27 0 1098 94 42 8:3 AM -9:00 AM
P:30 AM - 7:45 AM 0 0 0 0 4 0 63 0 37 183 0 216 66 2 7:45 AM - 8:00 AM 0 0 0 0 4 0 58 0 35 234 0 5 0 186 18 4 8:15 AM - 8:30 AM 0 0 0 0 4 0 39 0 44 110 0 2 0 186 32 4 8:15 AM - 8:30 AM 0 0 0 0 3 0 25 1 12 72 0 0 0 0 4 2 3 0 90 8 4 2 38 0 37 0 190 8 4 2 238 1019 0 27 0 198 8 2 2 38 10 10 134 3 2 2 2 1134
B:00 AM :8:15 AM 0 0 0 0 0 0 8 0 49 1 53 214 0 2 0 186 32 4 8:15 AM : 8:30 AM 0 0 0 0 44 110 0 2 0 122 14 1 8:30 AM : 8:45 AM 0 0 0 0 0 0 0 0 0 0 0 122 14 1 8:35 AM : 9:00 AM 0 0 0 0 0 0 0 0 0 0 2 0 27 62 0 3 0 90 8 4 0 </td
8:30 AM 8:45 AM 0 0 0 3 0 25 1 12 72 0 5 0 102 4 2 8:45 AM 9:00 AM 0 0 0 0 6 0 29 0 27 62 0 3 0 90 8 4 TOTAL 0 0 0 6 0 341 2 239 1019 0 27 0 1098 94 22 Northbound Eastbound Trucks Left Thru Right T
TOTAL 0 0 0 40 0 341 2 239 1019 0 27 0 1098 94 22 Northbound Southbound Eastbound Eastbound Eastbound Westbound Time Left Thru Right Trucks Left <th< td=""></th<>
Time Left Thru Right Trucks Left Thru Right Trucks <th< td=""></th<>
2:15 PM - 2:30 PM 0 0 0 4 0 29 0 28 98 0 1 0 134 3 2 2:30 PM - 2:45 PM 0 0 0 0 3 0 46 0 23 110 0 0 0 191 8 5 2:45 PM - 3:00 PM 0 0 0 0 5 0 53 1 37 137 0 1 0 169 5 1 3:00 PM - 3:45 PM 0 0 0 0 4 0 45 0 38 134 0 2 0 113 13 6 3:15 PM - 3:30 PM 0 0 0 0 0 0 0 2 0 410 430 2 0 113 13 13 6 3:30 PM - 3:30 PM 0 0 0 0 0 2 0 410 430
2:45 PM - 3:00 PM 0 0 0 0 5 0 53 1 37 137 0 1 0 169 5 1 3:00 PM - 3:15 PM 0 0 0 0 9 0 46 0 72 217 0 4 0 95 18 6 3:15 PM 0 0 0 0 0 4 0 45 0 38 134 0 2 0 113 13 6 3:15 PM 0 0 0 0 0 7 0 32 0 50 123 0 2 0 148 16 1 3:45 PM - 4:30 PM 0 0 0 0 0 0 0 0 167 1 2 4:00 PM - 4:35 PM 0 0 0 0 0 0 0 0 0 0 0 126 0 <t< td=""></t<>
3:15 PM - 3:30 PM 0 0 0 0 4 0 45 0 38 134 0 2 0 113 13 6 3:30 PM - 3:45 PM 0 0 0 0 0 7 0 32 0 50 123 0 2 0 148 16 1 3:45 PM - 4:00 PM 0 0 0 0 2 0 411 0 58 136 0 1 0 167 1 2 4:00 PM - 4:15 PM 0 0 0 0 0 0 0 0 0 0 167 1 2 4:00 PM - 4:35 PM 0 0 0 0 0 0 0 0 0 131 9 2 4:30 PM - 4:30 PM 0 0 0 0 0 0 0 0 0 126 6 0 4:45 PM 0 0 0 0 0 0 0 7 0 55 0 43<
3:45 PM - 4:00 PM 0 0 0 0 2 0 41 0 58 136 0 1 0 167 1 2 4:00 PM - 4:15 PM 0 0 0 0 6 0 28 0 51 130 0 1 0 167 1 2 4:15 PM - 4:30 PM 0 0 0 0 0 5 0 41 0 400 142 0 5 0 11 0 125 8 0 4:35 PM - 4:30 PM 0 0 0 0 0 5 0 41 0 400 142 0 5 0 131 9 2 4:45 PM - 5:00 PM 0 0 0 0 0 7 0 48 0 43 145 0 2 0 117 12 0 4:45 PM - 5:00 PM 0 0 0 0 0 7 0 35 0 43 146 0 2 0 1
4:00 PM - 4:15 PM 0 0 0 0 6 0 28 0 51 130 0 1 0 125 8 0 4:15 PM - 4:30 PM 0 0 0 0 0 5 0 41 0 40 142 0 5 0 126 6 0 4:30 PM - 4:45 PM 0 0 0 0 0 5 0 41 0 40 142 0 5 0 126 6 0 4:45 PM - 5:00 PM 0 0 0 0 7 0 48 0 43 145 0 2 0 131 9 2 5:00 PM - 5:15 PM 0 0 0 0 0 0 0 0 0 7 0 55 0 43 126 0 2 0 117 12 0 0 5:15 PM 0 0 0 0 0 0 0 0 10 115 5 0 <t< td=""></t<>
4:30 PM - 4:45 PM 0 0 0 0 5 0 49 0 44 118 0 2 0 131 9 2 4:45 PM - 5:00 PM 0 0 0 0 7 0 48 0 43 145 0 2 0 131 9 2 5:00 PM - 5:15 PM 0 0 0 0 7 0 55 0 43 145 0 2 0 99 7 2 5:15 PM 0 0 0 0 0 7 0 55 0 43 126 0 2 0 117 12 0 5:15 PM 0 0 0 0 0 0 0 0 115 5 0 5:30 PM - 5:30 PM 0 0 0 0 0 7 0 37 0 32 111 0 1 0 102 10 2 5:45 PM - 6:00 PM 0 0 0 0 85
5:00 PM - 5:15 PM 0 0 0 0 7 0 55 0 43 126 0 2 0 117 12 0 5:15 PM - 5:30 PM 0 0 0 0 6 0 44 0 41 144 0 1 0 115 5 0 5:30 PM - 5:45 PM 0 0 0 0 7 0 37 0 32 111 0 1 0 115 5 0 5:35 PM - 6:00 PM 0 0 0 0 7 0 37 0 32 111 0 1 0 102 10 2 5:45 PM 0 0 0 0 0 0 2 37 0 32 111 0 1 0 13 0 5:45 PM 0 0 0 0 0 85 0 652 1 657
5:30 PM - 5:45 PM 0 0 0 7 0 37 0 32 111 0 1 0 102 10 2 5:45 PM - 6:00 PM 0 0 0 0 4 0 28 0 34 120 0 0 87 13 0 TOTAL 0 0 0 0 85 0 652 1 657 2091 0 30 0 2010 142 29 Northbound Southbound Eastbound Eastbound Westbound PEAK HOUR Left Thru Right Trucks
TOTAL 0 0 0 85 0 652 1 657 2091 0 30 0 2010 142 29 Northbound Eastbound Eastbound Westbound PEAK HOUR Left Thru Right Trucks
PEAK HOUR Left Thru Right Trucks Left Thru Right Trucks
7:30 AM - 8:30 AM 0 0 0 0 20 0 209 1 169 741 0 12 0 710 70 11
2:30 PM - 3:30 PM 0 0 0 0 21 0 190 1 170 598 0 7 0 568 44 18
PHF Trucks Rolling Hills Rd PHF
AM 0.885 1.3% PM 190 0 21 0.909
PM 0.870 1.6% AM 209 0 20 0.854
Creston Rd 598 741 North 710 568 Creston Rd
PM AM ← ↑ ↑ ► 0.878 0.769 <u>PHF</u>
0 0 0 AM
0 0 0 PM
Page 1 of

Metro Traffic Dat	ta Inc		310 N. Irv Hanford, 800-975-6	raffic Dat vin Street - CA 93230 6938 Phor rotrafficdat	Suite 20 ne/Fax				Tu	rnir	ng N	IOV Prepared		ent st Transpo 895 Nap	Atta Rep ortation C Da Avenue, forro Bay,	onsulting Suite A-6	101
LOC	CATION		Rolling Hi	lls Rd @ C	Creston Ro	1			TITUDE						-		
									GITUDE				1		-		
COLLECTION	N DATE		Thursda	iy, August	25, 2022			w	EATHER			Clear			-		
Time	Left	thbound E Thru	Right	N.Leg Peds	Left	thbound E Thru	Right	S.Leg Peds	Left	tbound B Thru	Right	E.Leg Peds	Left	stbound B Thru	Right	W.Leg Peds	
7:00 AM - 7:15 AM 7:15 AM - 7:30 AM 7:30 AM - 7:45 AM	0 0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 0	1 0 0	0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 2	0 0 0	0 0 0 0	
7:45 AM - 8:00 AM 8:00 AM - 8:15 AM	0	0	0	3	0	0	0	0	0	0	0	0	0	1 0	0	0	
8:15 AM - 8:30 AM 8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	0	0	
8:45 AM - 9:00 AM TOTAL	0	0	0 0	0 5	0 0	0 0	0	0	0 0	1 3	0 0	0 0	0 0	1 5	0 0	0 0	
		thbound E		N.Leg		thbound E		S.Leg		tbound B		E.Leg		stbound B		W.Leg	
Time 2:00 PM - 2:15 PM	Left 0	Thru 0	Right 0	Peds 1	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 1	Left 0	Thru 0	Right 0	Peds 0	
2:15 PM - 2:30 PM 2:30 PM - 2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:45 PM - 3:00 PM 3:00 PM - 3:15 PM	0	0	0	0	0	0	0	0	0	0 7	0	0	0	1 0	0	0	
3:15 PM - 3:30 PM 3:30 PM - 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:45 PM - 4:00 PM 4:00 PM - 4:15 PM	0	0	0	1 0	0	0	0	0	0	0	0	0	0	1 0	0	0	
4:15 PM - 4:30 PM 4:30 PM - 4:45 PM	0	0	0	2 1	0	0	0	0	0	1 0	0	2 0	0	0	0	0	
4:45 PM - 5:00 PM 5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:15 PM - 5:30 PM 5:30 PM - 5:45 PM	0	0	0	1 1	0	0	0	0	0	0	0	0	0	0	0	0	
5:45 PM - 6:00 PM TOTAL	0	0	0	0 8	0	0	0	0	0	0 9	0	0	0	0	0	0	
	Nort	thbound E	Bikes	N.Leg	Sou	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	We	stbound B	likes	W.Leg	
PEAK HOUR 7:30 AM - 8:30 AM	Left 0	Thru 0	Right 0	Peds 5	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 2	Right 0	Peds 0	Left 0	Thru 4	Right 0	Peds 0	
2:30 PM - 3:30 PM	0	0	0	1	0	0	0	0	1	7	0	0	0	1	0	1	
	Bikes	Peds		I	I	I	Rol	ling Hills	Rd	Peds <>		I	I	I	I		
AM Peak Total	6	5				РМ	0	0	0	1							
PM Peak Total	9	2				AM	0	0	0	5							
			Peds <>	1	0				Ļ		AM	РМ					
			۵.		•			•	1				1				
				1	0		(•		0	0					
	<u>C</u>	Creston F	Rd	7	2	\rightarrow		Jorth	+		4	1	<u>c</u>	Creston F	<u>Rd</u>		
				0	0		Ľ	NOT UT	1		0	0					
				РМ	AM		←		┍		0	0	Peds <>				
						Peds <>	0	0	0	AM			ď				
						0	0	0	0	PM							
								<u>0</u>							Pa	age 2 of 3	

Metro Traffic Data Inc.	Metro Traffic Data Inc. 310 N. Irwin Street - Suite 20 Hanford, CA 93230 800-975-6938 Phone/Fax	Turnir	Prepared For: Central Coast Transport 895 Napa	Report
	www.metrotrafficdata.com		Mor	ro Bay, CA 93442
	Rolling Hills Rd @ Creston Rd		Rolling Hills Rd	
COUNTY	San Luis Obispo	E/W STREET	Creston Rd	
	Thursday, August 25, 2022		Clear	
	N/A	CONTROL TYPE	One-Way Stop	
		COMMENTS		
				Page 3 of 3

												-15,	/ ML	ND	Atta	chm
		Ŋ	Metro T	raffic Da	ta Inc.				Tu	rnir	na N	lov	eme	ent	Rer	oort
		٦		vin Street -							0					
Metro Traffic [)ata	<u>nc.</u>		CA 93230								Prepared Ce		st Transpo		
				6938 Phor rotrafficdat												, Suite A-6 CA 93442
LC	CATION		Melody	/Dr @ Cre	ston Rd			LA	TITUDE			35.6232				
	COUNTY			-			-					-120.6627			•	
							-									
COLLECTIC	ON DATE		Thursda	ay, August	25, 2022		-	W	EATHER			Clear				
		North	bound			South	bound			East	oound			West	bound	
Time 7:00 AM - 7:15 AM	Left 16	Thru 0	Right 4	Trucks 0	Left 0	Thru 0	Right 0	Trucks 0	Left 0	Thru 59	Right 6	Trucks 5	Left 1	Thru 65	Right 0	Trucks 2
7:15 AM - 7:30 AM 7:30 AM - 7:45 AM	11 61	0	4 8	0	0	0	0	0	0	70 114	21 60	2	7 8	112 164	0	1 1
7:45 AM - 8:00 AM	68	0	21	0	0	0	0	0	0	153	89	4	19	139	0	5
8:00 AM - 8:15 AM 8:15 AM - 8:30 AM	72 44	0	17 8	1	0	0	0	0	0	149 89	76 25	3	15 10	133 91	0	5 1
8:30 AM - 8:45 AM 8:45 AM - 9:00 AM	16 16	0	8 4	0	0	0	0	0	0	62 61	9 8	5 2	1	90 80	0	2 5
TOTAL	304	0	4 74	4	0	0	0	0	0	757	° 294	2 24	4 65	874	0	22
		North	bound		ſ	South	bound			East	oound			West	bound	
Time 2:00 PM - 2:15 PM	Left 17	Thru 0	Right 7	Trucks	Left 0	Thru 0	Right 0	Trucks	Left 0	Thru 77	Right 24	Trucks 5	Left 6	Thru 81	Right 0	Trucks 0
2:15 PM - 2:30 PM	34	0	8	0	0	0	0	0	0	76	28	2	7	104	0	2
2:30 PM - 2:45 PM 2:45 PM - 3:00 PM	48 18	0	6 7	1	0	0	0	0	0	91 103	19 39	0	7	146 153	0	4
3:00 PM - 3:15 PM	21	0	7	1	0	0	0	0	0	174	50	4	13	90	0	6
3:15 PM - 3:30 PM 3:30 PM - 3:45 PM	20 56	0	10 22	1	0	0	0	0	0	102 97	39 32	1	9 15	105 111	0	5 0
3:45 PM - 4:00 PM 4:00 PM - 4:15 PM	39 22	0	19 12	0	0	0	0	0	0	119 102	20 30	1	12 16	135 111	0	2 0
4:15 PM - 4:30 PM	21	0	17	0	0	0	0	0	0	129	19	5	5	109	0	0
4:30 PM - 4:45 PM 4:45 PM - 5:00 PM	14 19	0	8 6	0	0	0	0	0	0	110 120	17 29	1	13 9	125 87	0	2
5:00 PM - 5:15 PM	15	0	5	0	0	0	0	0	0	108	24	2	5	113	0	0
5:15 PM - 5:30 PM 5:30 PM - 5:45 PM	17 14	0	8	0	0	0	0	0	0	119 97	28 27	1	11 5	103 96	0	0
5:45 PM - 6:00 PM TOTAL	13 388	0 0	10 160	0 6	0	0	0	0	0	105 1729	17 442	0 29	2 142	86 1755	0 0	0 25
IGIAL	000	•	100	, v	v	•	v	· ·	v	1120		20	1.74	1700	v	20
		N a utila	ام مدینه ما			Cauth				Feet				Mart	h h u u h h	
PEAK HOUR	Left	North Thru	bound Right	Trucks	Left	South Thru	nbound Right	Trucks	Left	Eastl Thru	oound Right	Trucks	Left	West Thru	bound Right	Trucks
PEAK HOUR 7:30 AM - 8:30 AM	Left 245			Trucks	Left 0			Trucks	Left 0			Trucks	Left 52			Trucks
		Thru	Right			Thru	Right			Thru	Right			Thru	Right	
7:30 AM - 8:30 AM	245	Thru 0	Right 54	4	0	0 Thru	Right 0	0	0	Thru 505	Right 250	10	52	527	Right 0	12
7:30 AM - 8:30 AM	245	Thru 0	Right 54	4	0	0 Thru	Right 0	0	0	Thru 505 492	Right 250	10	52	527	Right 0	12
7:30 AM - 8:30 AM	245	Thru 0	Right 54	4	0	0 Thru	Right 0	0	0	Thru 505	Right 250	10	52	527	Right 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM	245 136 PHF	Thru 0 0 Trucks	Right 54	4	0	0 Thru	Right 0	0	0	Thru 505 492	Right 250	10	52	527	Right 0	12
7:30 AM - 8:30 AM	245 136	Thru 0 0	Right 54	4	0	Thru 0 0	Right 0 0 0	0 0	0 0 0	Thru 505 492 PHF ######	Right 250	10	52	527	Right 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM	245 136 PHF	Thru 0 0 Trucks	Right 54	4	0	0 0	Right 0	0	0	Thru 505 492 PHF	Right 250	10	52	527	Right 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835	Thru 0 0 Trucks 1.6%	Right 54	4	0	Thru 0 0	Right 0 0 0	0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141	10 8	52	527	Right 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835	Thru 0 0 Trucks 1.6%	Right 54 58	4	0	Thru 0 0	Right 0 0 0	0 0	0 0 0	Thru 505 492 PHF ######	Right 250	10	52	527	Right 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835	Thru 0 0 Trucks 1.6%	Right 54 58	4	0	Thru 0 0	Right 0 0 0	0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141	10 8	52	527	Right 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0	0 0 0.78 0	Thru 0 0	Right 0 0 0	0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141 AM 0	10 8 PM 0	<u>52</u> 49	Thru 527 441	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6%	Right 54 58 PHF	4 4 0.706	0.78	Thru 0 0	Right 0 0 0	0 0 0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141 AM	10 8 PM	<u>52</u> 49	527	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0	0 0 0.78 0	Thru 0 0	Right 0 0 0	0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141 AM 0	10 8 PM 0	<u>52</u> 49	Thru 527 441	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0 492	0 0 0.78 0 505	Thru 0 0	Right 0 0 0	0 0 0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141 41 AM 0 527 52	10 8 PM 0 441 49	52 49	Thru 527 441	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0 492 141	0 0 0.78 0 505 250	Thru 0 0	Right 0 0 0	0 0 0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141 AM 0 527	10 8 PM 0 441	<u>52</u> 49	Thru 527 441	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0 492 141	0 0 0.78 0 505 250	PM AM	Right 0 0 0	0 0 0 0	0 0 0	Thru 505 492 PHF ######	Right 250 141 41 AM 0 527 52	10 8 PM 0 441 49	52 49	Thru 527 441	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0 492 141	0 0 0.78 0 505 250	Thru 0 0 0 PM AM AM Image: Constraint of the second sec	Right 0 0 0 0 0 0 0 245	0 0 0 ↓ North	0 0 0 0	Thru 505 492 PHF ##### ###### AM	Right 250 141 41 AM 0 527 52	10 8 PM 0 441 49	52 49	Thru 527 441	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0 492 141	0 0 0.78 0 505 250	PM AM PHF	Right 0	o o o ↓ North	0 0 0 0	Thru 505 492 PHF ###### ######	Right 250 141 41 AM 0 527 52	10 8 PM 0 441 49	52 49	Thru 527 441	Right 0 0	12
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM AM	245 136 PHF 0.835 0.927	Thru 0 0 Trucks 1.6% 1.9%	Right 54 58 PHF	4 4 0.706 0 492 141	0 0 0.78 0 505 250	Thru 0 0 0 PM AM AM Image: Constraint of the second sec	Right 0 0 0 0 0 0 0 245 136	0 0 0 ↓ North	0 0 0 0 0 0 0 54 58	Thru 505 492 PHF ##### ###### AM	Right 250 141 41 AM 0 527 52	10 8 PM 0 441 49	52 49	Thru 527 441	Right 0 0 0	12

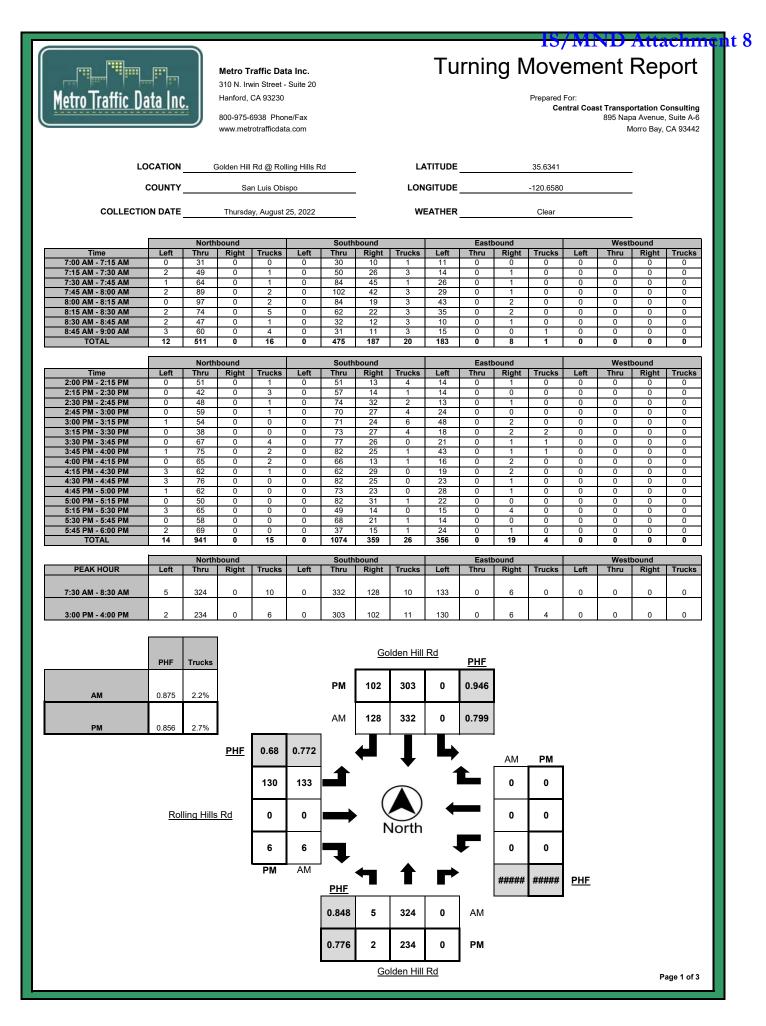
												-IS	/ MI	ND.	Atta	ehm
				raffic Da					Tu	rnir	ng N	lov	eme	ent	Rep	oort
Metro Traffic D	ata li	nc.		CA 93230								Prepared Ce		st Transpo		
	de referències de l'acter d			6938 Pho rotrafficdat												Suite A-6 CA 93442
LC	CATION		Melody	Dr @ Cre	ston Rd		_	L	TITUDE			35.6232			-	
	COUNTY	. <u></u>	Sa	n Luis Obi	spo		LONGITUDE						,		-	
COLLECTIC	ON DATE		Thursda	ay, August	25, 2022		-	w	EATHER							
Time 7:00 AM - 7:15 AM	Nort Left 0	thbound E Thru 0	Bikes Right	N.Leg Peds 0	Sou Left 0	thbound I Thru 0	Bikes Right 0	S.Leg Peds 3	Eas Left 0	tbound B Thru 0	ikes Right 0	E.Leg Peds 1	We Left 0	stbound B Thru 0	ikes Right 0	W.Leg Peds 3
7:15 AM - 7:30 AM 7:30 AM - 7:45 AM	0	0	0	0	0	0	0	03	0	0	0	1	0	0	0	0 5
7:45 AM - 8:00 AM 8:00 AM - 8:15 AM	0	0	0	0	0	0	0	10 1	0	0	0	2	0	0	0	3 7
8:15 AM - 8:30 AM 8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM TOTAL	0 0	0	0	0 0	0 0	0 0	0 0	0 17	0	0	1 1	1 7	0 0	0	0	2 20
		thbound E		N.Leg		thbound I		S.Leg		tbound B		E.Leg		stbound B		W.Leg
Time 2:00 PM - 2:15 PM	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0
2:15 PM - 2:30 PM 2:30 PM - 2:45 PM	1 0	0	1 0	0	0	0	0	0	0	0	0	1 1	0	0	0	0
2:45 PM - 3:00 PM 3:00 PM - 3:15 PM	0	0	0	0	0	0	0	2 12	0	0 8	0	1 0	0	0	0	0 10
3:15 PM - 3:30 PM 3:30 PM - 3:45 PM	0	0	0	0	0	0	0	1 0	0	0	0	4	0	0	0	0
3:45 PM - 4:00 PM 4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	2 0	0	1	0	0
4:15 PM - 4:30 PM 4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 4
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0
5:00 PM - 5:15 PM 5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 2
5:30 PM - 5:45 PM 5:45 PM - 6:00 PM	0	0	0	0	0	0	0	1 0	0	0	0	1	0	0	0	1 0
TOTAL	1	0	1	0	0	0	0	18	0	9	2	11	1	2	0	21
PEAK HOUR	Nor Left	thbound E Thru	Bikes Right	N.Leg Peds	Sou Left	thbound I Thru	Bikes Right	S.Leg Peds	Eas Left	tbound B Thru	ikes Right	E.Leg Peds	We: Left	stbound B Thru	ikes Right	W.Leg Peds
7:30 AM - 8:30 AM	0	0	0	0	0	0	0	14	0	0	0	4	0	0	0	15
3:00 PM - 4:00 PM	0	0	0	0	0	0	0	13	0	8	1	7	0	1	0	10
	Dilas	D. I.						<u>0</u>		Peds <>						
AM Peak Total	Bikes 0	Peds 33				РМ	0	0	0	0						
PM Peak Total	10	30				AM	0	0	0	0						
			Peds <>	10	15		┥		L		AM	РМ				
			_	0	0					L	0	0				
	<u>C</u>	Creston F	Rd	8	0		•)		0	1	<u>c</u>	Creston F	Rd	
				1	0	┓		North	1	L	0	0				
				PM	AM	Peds <>	◄		P	-	4	7	Peds <>			
						14	0	0	0	AM			-			
						13	0	0	0	РМ						
							<u>1</u>	Melody [<u>)r</u>	-					P	age 2 of 3

	Metro Traffic Data Inc.	Turning Movement Repor							
<u>Metro Traffic Data Inc.</u>	310 N. Irwin Street - Suite 20 Hanford, CA 93230 800-975-6938 Phone/Fax			insportation Consulting i Napa Avenue, Suite A-6					
	www.metrotrafficdata.com			Morro Bay, CA 93442					
	Melody Dr @ Creston Rd	N/S STREET	Melody Dr						
COUNTY	San Luis Obispo	E/W STREET	Creston Rd						
COLLECTION DATE	Thursday, August 25, 2022	WEATHER	Clear						
	37 Seconds	CONTROL TYPE	Signal						
		COMENTS Westoon	Ind left turns are permitted.						
				Page 3 of 3					

												-IS,	/M	ND	Atta	a chm
				raffic Dat vin Street -					Tu	rnir	ng N	love	eme	ent	Rep	oort
<u>Metro Traffic Da</u>	<u>ata no</u>	<u>c.</u>	Hanford,	CA 93230			Prepared For: Central Coast Transportation Consulting									
				6938 Phor rotrafficdat										895 Nap	a Avenue	, Suite A-6 CA 93442
LO	CATION		Shopping	Center @	Creston R	d		LA	TITUDE			35.6230				
C	COUNTY		Sa	ın Luis Obi	spo		-	LON	GITUDE			-120.6615				
COLLECTIO	ON DATE		Thursda	ay, August	25, 2022			W	EATHER			Clear				
Time	Left	North Thru	bound Right	Trucks	Left	South Thru	bound Right	Trucks	Left	East! Thru	bound Right	Trucks	Left	West Thru	bound Right	Trucks
7:00 AM - 7:15 AM 7:15 AM - 7:30 AM	0	0	0	0	1	0	3 10	0	6 4	58 66	0	5 1	0	65 112	5	2
7:30 AM - 7:45 AM	0	0	0	0	2	0	4	0	6	117	0	2	0	166	1	2
7:45 AM - 8:00 AM 8:00 AM - 8:15 AM	0	0	0	0	1	0	8	0	15 15	159 151	0	4	0	147 143	7 9	2 5
8:15 AM - 8:30 AM	0	0	0	0	0	0	9	0	10	91	0	2	0	91	5	1
8:30 AM - 8:45 AM 8:45 AM - 9:00 AM	0	0	0	0	1 4	0	8	0	10 14	61 52	0	4	0	86 80	11 10	25
TOTAL	0	0	0	0	10	0	50	0	80	755	0	21	0	890	50	20
		North	bound			South	bound			East	bound			West	bound	
Time 2:00 PM - 2:15 PM	Left 0	Thru 0	Right 0	Trucks	Left 4	Thru 0	Right 14	Trucks 0	Left 15	Thru 70	Right 0	Trucks 5	Left 0	Thru 71	Right 7	Trucks
2:15 PM - 2:30 PM	0	0	0	0	3	0	17	1	14	71	0	1	0	96	12	1
2:30 PM - 2:45 PM 2:45 PM - 3:00 PM	0	0	0	0	1 6	0	13 20	0	20 19	76 89	0	0	0	142 144	12 12	4
3:00 PM - 3:15 PM	0	0	0	0	3	0	15	0	29	156	0	2	0	92	14	7
3:15 PM - 3:30 PM 3:30 PM - 3:45 PM	0	0	0	0	5 14	0	16 18	0	23 37	85 86	0	1 2	0	96 105	11 14	4
3:45 PM - 4:00 PM	0	0	0	0	14	0	23	0	30	107	0	0	0	105	14	1
4:00 PM - 4:15 PM 4:15 PM - 4:30 PM	0	0	0	0	9 4	0	25 19	0	32 38	88 106	0	1	0	103 92	10 10	0
4:30 PM - 4:45 PM	0	0	0	0	4 9	0	19	0	24	106	0	4 2	0	92	9	2
4:45 PM - 5:00 PM	0	0	0	0	7	0	15	1	25 26	102 85	0	2	0	84 100	16	1
5:00 PM - 5:15 PM 5:15 PM - 5:30 PM	0	0	0	0	76	0	21 18	0	26	100	0	2	0	99	9 7	0
5:30 PM - 5:45 PM	0	0	0	0	9	0	15	0	20	84	0	1	0	80	10	1
5:45 PM - 6:00 PM TOTAL	0	0	0	0	8 109	0	9 275	0 2	23 402	92 1497	0	0 25	0	84 1630	10 173	1 25
		North	bound			South	bound			East	bound			West	bound	
PEAK HOUR	Left	Thru		Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:30 AM - 8:30 AM	0	0	0	0	3	0	25	0	46	518	0	10	0	547	22	10
3:00 PM - 4:00 PM	0	0	0	0	36	0	72	0	119	434	0	5	0	418	49	13
	PHF	Trucks					<u>Sho</u>	pping Ce	enter	PHF						
		THURS				РМ	72	0	36	0.73]					
AM	0.861	1.7%				AM	25	0	3	0.778	1					
РМ	0.913	1.6%	J				23		.	0.110						
			<u>PHF</u>	0.747	0.81			₽	•		AM	РМ				
				119	46		1				22	49				
	<u>C</u>	Creston F	<u>Rd</u>	434	518	\rightarrow		North	+		547	418	<u>C</u>	Creston F	Rd	
				0	0				1		0	0				
				PM	AM	J ▼ PHF	←		┏→		0.852	0.865	PHF			
						#####	0	0	0	AM			l			
						#####	0	0	0	РМ						
							<u>Sho</u>	pping Ce	enter	1					P	age 1 of 3

												-IS	<u>/ M </u>	ND	Atta	ehm	nen
Metro Traffic Data Inc. <u>Metro Traffic Data Inc.</u> 310 N. Irwin Street - Suite 20 Hanford, CA 93230 800-975-6938 Phone/Fax www.metrotrafficdata.com									Tu	rnir	ng N	IOV Prepared		ent	ortation C	onsulting	
			www.met	rotrafficdat	a.com										/lorro Bay,		
LC	OCATION	l	Shopping	Center @	Creston R	d	_	L	TITUDE			35.6230			_		
	COUNTY	,	Sa	n Luis Obi	spo		-	LON	GITUDE		-120.6615						
COLLECTIO	ON DATE	i	Thursda	ay, August	25, 2022		-	w	EATHER			Clear			-		
	Northbound Bikes N.Leg Southbound B							S.Leg	Eas	tbound B	ikes	E.Leg	Bikes	W.Leg			
Time 7:00 AM - 7:15 AM	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0	
7:15 AM - 7:30 AM 7:30 AM - 7:45 AM 7:45 AM - 8:00 AM	0	0 0 0	0 0 0	0 1 4	0 0 0	0 0 0	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 4 0	0 0 0	0 0 0 0	
8:00 AM - 8:15 AM 8:15 AM - 8:30 AM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
8:30 AM - 8:45 AM 8:45 AM - 9:00 AM	0	0	0	1 1	0	0	0	0	0	0	0	0	0	0	0	0	
TOTAL	0	0	0	11	0	0	2	0	0	0	0	0	0	4	1	0	
Time	Left	thbound E Thru	Right	N.Leg Peds	Left	thbound E Thru	Right	S.Leg Peds	Left	tbound B Thru	Right	E.Leg Peds	Left	stbound B	Right	W.Leg Peds	
2:00 PM - 2:15 PM 2:15 PM - 2:30 PM 2:30 PM - 2:45 PM	0	0 0 0	0 0 0	0 1 0	0 0 0	0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
2:45 PM - 3:00 PM 3:00 PM - 3:15 PM	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	
3:15 PM - 3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:30 PM - 3:45 PM 3:45 PM - 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:00 PM - 4:15 PM 4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
4:30 PM - 4:45 PM 4:45 PM - 5:00 PM	0	0	0	0	0	0	1 0	0	0	0	0	0	0	1 0	0	0	
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:15 PM - 5:30 PM 5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:45 PM - 6:00 PM TOTAL	0	0	0	0 2	0	0	03	0	0 2	0 9	0	0	0	0 2	0	0	
		thbound E		N.Leg	Sou	thbound E	Bikes	S.Leg		tbound B		E.Leg		stbound B		W.Leg	
PEAK HOUR 7:30 AM - 8:30 AM	Left 0	0 Thru	Right 0	Peds 9	Left 0	Thru 0	Right 2	Peds 0	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 4	Right 1	Peds 0	
3:00 PM - 4:00 PM	0	0	0	0	0	0	0	0	0	8	0	0	0	1	0	0	
					1		I					I					
							<u>Sho</u>	pping Ce	enter	Peds <>							
AM Peak Total	Bikes 7	Peds 9				РМ	0	0	0	0	1						
AW Feak Total	<i>'</i>	3	1				U	U	Ŭ	U							
PM Peak Total	9	0		r		AM	2	0	0	9							
			Peds <>	0	0		\leftarrow		Ļ		AM	РМ					
			<u>م</u>	0	0			•	1		1	0]				
					, , , , , , , , , , , , , , , , , , ,		(-			Ů					
	<u>(</u>	Creston F	Rd	8	0			Jorth			4	1	<u>c</u>	Creston F	<u>Rd</u>		
				0	0						0	0					
				PM	AM] 🗸	←		₽		0	0	\$ ¢				
						Peds <>	_		_				Peds				
						0	0	0	0	AM							
						0	0	0	0	РМ							
							<u>Sho</u>	pping Ce	enter						Pa	age 2 of 3	

Metro Traffic Data Inc.	Metro Traffic Data Inc. 310 N. Irwin Street - Suite 20 Hanford, CA 93230 800-975-6938 Phone/Fax www.metrotrafficdata.com	Turni		
COLLECTION DATE	Shopping Center @ Creston Rd San Luis Obispo Thursday, August 25, 2022 N/A	E/W STREET WEATHER	Shopping Center Creston Rd Clear One-Way Stop	_
	dots	North		Page 3 of 3


Metro Traffic Data Inc.		Turning Movement Report Prepared For: Bentral Coast Transportation Consulting 895 Napa Avenue, Suite A-6 Morro Bay, CA 93442											
LOCATION	Golden Hill Rd @ C San Luis Ob								35.6223 -120.6597			-	
COLLECTION DATE	Thursday, August	25, 2022		WEATHER Clear							-		
	bound	1	Southbo		Trucha	1.44	Eastb		Truche	1.44		bound	Trucha
Time Left Thru 7:00 AM - 7:15 AM 0 0	RightTrucks00	Left 26	Thru 0	Right 7	Trucks 2	Left 6	Thru 52	Right 0	Trucks 3	Left 0	Thru 64	Right 24	Trucks 1
7:15 AM - 7:30 AM 0 0 7:30 AM - 7:45 AM 0 0	0 0	48 72	0	11 17	2	10 11	55 110	0	3	0	101 163	48 57	2 4
7:45 AM - 8:00 AM 0 0	0 0	96	0	20	1	30	137	0	4	0	130	70	3
8:00 AM - 8:15 AM 0 0 8:15 AM - 8:30 AM 0 0	0 0	98 57	0	22 17	4	33 15	124 74	0	3	0	113 80	69 66	7 6
8:30 AM - 8:45 AM 0 0	0 0	39	0	11	2	8	58	0	4	0	80	42	3
8:45 AM - 9:00 AM 0 0 TOTAL 0 0	0 0 0 0	39 475	0	5 110	2 17	10 123	47 657	0	2 23	0	89 820	56 432	8 34
		-10	•	. 10	17	123	007	v	23	•	020	452	J#
Norti Time Left Thru	nbound Right Trucks	Left	Southbo Thru	ound Right	Trucks	Left	Eastb Thru	ound Right	Trucks	Left	West Thru	bound Right	Trucks
2:00 PM - 2:15 PM 0 0	0 0	55	0	7	2	3	72	0	5	0	74	51	3
2:15 PM - 2:30 PM 0 0 2:30 PM - 2:45 PM 0 0	0 0	55 81	0	10 14	4	8	69 74	0	1	0	99 137	44 52	3 4
2:45 PM - 3:00 PM 0 0	0 0	63	0	15	3	7	91	0	1	0	148	53	2
3:00 PM - 3:15 PM 0 0 3:15 PM - 3:30 PM 0 0	0 0	75 74	0	20 13	7 4	15 17	138 76	0	2	0	76 97	45 41	4 3
3:30 PM - 3:45 PM 0 0	0 0	67	0	26	0	15	82	0	2	0	102	64	4
3:45 PM - 4:00 PM 0 0 4:00 PM - 4:15 PM 0 0	0 0 0	79	0	24 14	1	23 13	98 88	0	0	0	116 104	79	2
4:00 PM - 4:15 PM 0 0 4:15 PM - 4:30 PM 0 0	0 0	71 74	0	14	1	13	88	0	4	0	83	58 59	1
4:30 PM - 4:45 PM 0 0	0 0	88	0	20	0	8	100	0	0	0	108	78	2
4:45 PM - 5:00 PM 0 0 5:00 PM - 5:15 PM 0 0	0 0	70 89	0	11 9	1 1	11 5	99 88	0	1	0	85 98	52 53	0
5:15 PM - 5:30 PM 0 0	0 0	56	0	16	0	11	93	0	1	0	94	64	0
5:30 PM - 5:45 PM 0 0 5:45 PM - 6:00 PM 0 0	0 0	65 47	0	15 8	1 1	11 6	88 92	0	1	0	76 84	51 60	1
5.45 PM - 8.00 PM 0 0 TOTAL 0 0	0 0	1109	0	° 235	28	170	92 1437	0	23	0	1581	904	31
North	nbound	1	Southbo	ound			Eastb	ound			West	bound	
PEAK HOUR Left Thru	Right Trucks	Left		Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:30 AM - 8:30 AM 0 0	0 0	323	0	76	9	89	445	0	11	0	486	262	20
3:45 PM - 4:45 PM 0 0	0 0	312	0	71	2	57	375	0	5	0	411	274	6
	1												
PHF Trucks				GO	lden Hill	Ra	PHF						
	1		Г										
AM 0.870 2.4%	-		РМ	71	0	312	0.887						
PM 0.895 0.9%			AM	76	0	323	0.831						
· · · · · ·	<u>PHF</u> 0.893	0.799				L			-				
	57	89		•		1		AM 262	РМ 274				
	57	05		(202	274				
Creston	<u>Rd</u> 375	445			lorth	-		486	411	<u>C</u>	Creston F	Rd	
	0	0				1		0	0				
	PM	AM	•			┍→		0.85	0.878	PHF			
			<u>PHF</u>		_								
		#	#####	0	0	0	AM						
		#	#####	0	0	0	РМ						

Page 1 of 3

rent 8

Metro Traffic Dat	Turning Movement Report Prepared For: Central Coast Transportation Consulting																
				6938 Phor otrafficdat								Ce	entral Coa	895 Nap	ortation Co a Avenue, lorro Bay,	Suite A-6	
LOC	CATION		Golden H	lill Rd @ C	reston Rd		-	LÆ	TITUDE			35.6223					
C	OUNTY		Sa	n Luis Obi	spo		-	LON	GITUDE			-120.6597	7				
COLLECTION	N DATE		Thursda	iy, August	25, 2022		-	W	EATHER		Clear						
Time 7:00 AM - 7:15 AM	Nort Left 0	thbound E Thru 0	Bikes Right	N.Leg Peds	Sou Left 0	thbound B Thru 0		S.Leg Peds 0	Eas Left 0	tbound B Thru 0	ikes Right 0	E.Leg Peds	West Left	stbound B Thru 0	ikes Right 0	W.Leg Peds	
7:15 AM - 7:30 AM 7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
7:45 AM - 8:00 AM 8:00 AM - 8:15 AM	0	0	0	3 1	0	0	0	0	0	0	0	1 0	0	0	0	2	
8:15 AM - 8:30 AM 8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	0	4	
8:45 AM - 9:00 AM TOTAL	0 0	0	0	1 8	0	0 0	0	0 0	0 0	0	0	0 6	0 0	0	0	2 9	
Time	Nort Left	thbound E Thru	Bikes Right	N.Leg	Sou Left	thbound I Thru	Bikes Right	S.Leg	Eas Left	tbound B Thru	ikes Right	E.Leg	Wes Left	stbound B	ikes Right	W.Leg	
2:00 PM - 2:15 PM 2:15 PM - 2:30 PM	0	0	0	Peds 0 1	0	0	0	Peds 0 0	0	0	0	Peds 0 0	0	0	0 0	Peds 0 0	
2:30 PM - 2:45 PM 2:45 PM - 3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:00 PM - 3:15 PM 3:15 PM - 3:30 PM	0	0	0	0	0	0	0	0	0	6	0	6 0	0	0	0	0	
3:30 PM - 3:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	
3:45 PM - 4:00 PM 4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	0	1	
4:15 PM - 4:30 PM 4:30 PM - 4:45 PM	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0	1 0	
4:45 PM - 5:00 PM 5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:15 PM - 5:30 PM 5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:45 PM - 6:00 PM TOTAL	0	0	0	1 7	0	0 0	0	0	0	0	0	0 7	0 0	0	0	0 3	
	Nort	thbound E	Bikes	N.Leg	Sou	thbound I	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	We	stbound B		W.Leg	1
PEAK HOUR 7:30 AM - 8:30 AM	Left 0	Thru 0	Right 0	Peds 6	Left 0	Thru 0	Right	Peds 0	Left 0	Thru 0	Right 0	Peds 5	Left 0	Thru 1	Right 0	Peds 7	
3:45 PM - 4:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	2	
	Bikes	Peds					<u>Go</u>	lden Hill	<u>Rd</u>	Peds <>							
AM Peak Total	2	18				РМ	0	0	0	1							
PM Peak Total	1	3				AM	1	0	0	6							
T W T Car Total	•	Ĵ	\$					•		Ŭ							
			Peds	2	7			₽			AM	РМ	-				
				0	0				1		0	0					
	<u>C</u>	Creston F	Rd	0	0				+		1	1	<u>c</u>	Creston F	<u>Rd</u>		
				0	0		N	lorth	1		0	0	1				
				РМ	AM	Peds <>	←		┍		5	0	Peds <>				
						0	0	0	0	AM			۵				
						0	0	0	0	РМ							
							-	<u>0</u>							Pa	age 2 of 3	

Metro Traffic Data Inc.	Metro Traffic Data Inc. 310 N. Irwin Street - Suite 20 Hanford, CA 93230	Turniı	ng Movement I Prepared For: Central Coast Transpo	Report
	800-975-6938 Phone/Fax www.metrotrafficdata.com		895 Napa	a Avenue, Suite A-6 prro Bay, CA 93442
	Golden Hill Rd @ Creston Rd		Golden Hill Rd	
	San Luis Obispo		Creston Rd	
	Thursday, August 25, 2022 41 Seconds	WEATHER		
	41 Seconds		Signai	
		COMMENTS Eastbour	Ind left turns are protected.	
				Page 3 of 3

																tehm	
Metro Traffic D				Tu	rnir	ng N	Prepared	For:	st Transp 895 Nap	ortation C ba Avenue	consulting , Suite A-6 CA 93442						
			www.meu	rotrafficdat	la.com									N	iono bay,	CA 93442	
L	OCATION	I <u></u>	Golden Hill	Rd @ Rol	lling Hills F	Rd	-	L	TITUDE			35.6341			-		
	COUNTY	·	Sa	ın Luis Obi	spo		-	LON	GITUDE		-120.6580						
COLLECTI	ON DATE	:	Thursda	ay, August	25, 2022		-	w	EATHER			Clear			-		
Time	Nor Left	rthbound E Thru	Bikes Right	N.Leg Peds	Sou Left	thbound I Thru	Bikes Right	S.Leg Peds	Eas Left	tbound B Thru	ikes Right	E.Leg Peds	We Left	stbound E Thru	likes Right	W.Leg Peds	1
7:00 AM - 7:15 AM 7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	
7:30 AM - 7:45 AM 7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:00 AM - 8:15 AM 8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	3 0	
8:30 AM - 8:45 AM 8:45 AM - 9:00 AM	0	0	0	0 0	0	0 0	0	0	0	0	0	0	0	0 0	0	5 2	
TOTAL	0 Nor	0 rthbound E	0 Bikes	0 N.Leg	0	1 thbound I	0 Bikes	0 S.Leg	0 Fas	0 tbound B	0 ikes	0 E.Leg	0 We	0 stbound E	0 Bikes	10 W.Leg	
Time 2:00 PM - 2:15 PM	Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0	Lus Left 0	Thru 0	Right 0	Peds 0	Left 0	Thru 0	Right 0	Peds 0	
2:15 PM - 2:30 PM 2:30 PM - 2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1 0	
2:45 PM - 3:00 PM 3:00 PM - 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:15 PM - 3:30 PM 3:30 PM - 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:45 PM - 4:00 PM 4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:30 PM - 4:45 PM 4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
5:15 PM - 5:30 PM 5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:45 PM - 6:00 PM TOTAL	0	0	0	0 0	0	0 0	0	0	1 1	0 0	0	0 0	0	0	0	0 5	
		rthbound E		N.Leg		thbound		S.Leg		tbound B		E.Leg		stbound E		W.Leg	1
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	
7:30 AM - 8:30 AM 3:00 PM - 4:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	3 0	
3.00 FWI - 4.00 FWI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
			1				Go	lden Hill	Rd								
	Bikes	Peds								Peds <>	1						
AM Peak Total	1	3				РМ	0	0	0	0							
PM Peak Total	0	0				AM	0	1	0	0							
		-	Peds <>	0	3		4		L								
			Pe				•	▼	1		AM	PM	1				
				0	0		(- -		0	0					
	<u>Ro</u>	olling Hills	<u>s Rd</u>	0	0			O rth	-		0	0		<u>0</u>			
				0	0		r.	.oru1	1		0	0]				
				РМ	AM	」 ▼	←		┍→		0	0	sb ¢				
						Peds <>			_]			Peds				
						0	0	0	0	AM							
						-	-										
						0	0	0 Iden Hill	0	PM							

	tro Traffic Data Inc. N. Irwin Street - Suite 20	Turr	nt Report			
	ford, CA 93230 -975-6938 Phone/Fax v.metrotrafficdata.com			Asportation Consulting Napa Avenue, Suite A-6 Morro Bay, CA 93442		
	en Hill Rd @ Rolling Hills Rd		Golden Hill Rd			
COUNTY	San Luis Obispo	E/W STREET	Rolling Hills Rd			
COLLECTION DATET		WEATHER	Clear			
CYCLE TIME	N/A	CONTROL TYPE	One-Way Stop			
	∦↓↓	COMMENTS				
	STOP	Sorth III		Page 3 of 3		

Appendix B: Intersection Calculation Sheets

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	4		۰¥	
Traffic Vol, veh/h	24	797	914	7	6	25
Future Vol, veh/h	24	797	914	7	6	25
Conflicting Peds, #/hr	6	0	0	6	3	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	27	906	1039	8	7	28

Major/Minor	Major1	Ν	1ajor2	[Vinor2	
Conflicting Flow All	1053	0	-	0	2012	1049
Stage 1	-	-	-	-	1049	-
Stage 2	-	-	-	-	963	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	661	-	-	-	65	276
Stage 1	-	-	-	-	337	-
Stage 2	-	-	-	-	370	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	59	274
Mov Cap-2 Maneuver	· -	-	-	-	179	-
Stage 1	-	-	-	-	307	-
Stage 2	-	-	-	-	368	-
Approach	EB		WB		SB	
HCM Control Delay, s	s 0.3		0		21.9	
HCM LOS					С	
Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		657	-	-	-	248
HCM Lane V/C Ratio		0.042	-	-	-	0.142
HCM Control Delay (s	5)	10.7	-	-	-	21.9
HCM Lane LOS		В	-	-	-	С
HCM 95th %tile Q(vel	h)	0.1	-	-	-	0.5

Int Delay, s/veh	6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	et		٦	1
Traffic Vol, veh/h	169	741	710	70	20	209
Future Vol, veh/h	169	741	710	70	20	209
Conflicting Peds, #/hr	5	0	0	5	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	60	-	-	-	0	100
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	190	833	798	79	22	235

Major/Minor	Major1	N	lajor2	l	Vinor2			
Conflicting Flow All	882	0	-	0	2056	843		
Stage 1	-	-	-	-	843	-		
Stage 2	-	-	-	-	1213	-		
Critical Hdwy	4.12	-	-	-	6.42	6.22		
Critical Hdwy Stg 1	-	-	-	-	5.42	-		
Critical Hdwy Stg 2	-	-	-	-	5.42	-		
Follow-up Hdwy	2.218	-	-	-	3.518			
Pot Cap-1 Maneuver	767	-	-	-	61	364		
Stage 1	-	-	-	-	422	-		
Stage 2	-	-	-	-	281	-		
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuve		-	-	-	45	362		
Mov Cap-2 Maneuve	er -	-	-	-	45	-		
Stage 1	-	-	-	-	315	-		
Stage 2	-	-	-	-	280	-		
Approach	EB		WB		SB			
HCM Control Delay,			0		41.7			
HCM LOS	5 L .I				E			
					_			
Minor Lane/Major Mv	/mt	EBL	EBT	WBT	WBR :	SBLn1 SBLn2		

Capacity	/ (veh/h)	763	-	-	-	45	362
HCM La	ne V/C Ratio	0.249	-	-	-	0.499	0.649
HCM Co	ontrol Delay (s)	11.3	-	-	-	147.5	31.6
HCM La	ne LOS	В	-	-	-	F	D
HCM 95	th %tile Q(veh)	1	-	-	-	1.8	4.3

Creston Road Multi-Family

Lane Group

Lane Group Flow (vph) 899 62 627 356 v/c Ratio 0.53 0.26 0.36 0.64 Control Delay 8.5 11.5 8.5 19.2 Queue Delay 0.0 0.0 0.0 10.0 Total Delay 8.5 11.5 8.5 19.2 Queue Length 50th (ft) 58 8 45 67 Queue Length 95th (ft) 123 33 94 155 Internal Link Dist (ft) 379 270 218 Turn Bay Length (ft) 115 115 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26						
Control Delay 8.5 11.5 8.5 19.2 Queue Delay 0.0 0.0 0.0 Total Delay 8.5 11.5 8.5 19.2 Queue Length 50th (ft) 58 8 45 67 Queue Length 95th (ft) 123 33 94 155 Internal Link Dist (ft) 379 270 218 Turn Bay Length (ft) 115 115 Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	Lane Group Flow (vph)	899	62	627	356	
Queue Delay 0.0 0.0 0.0 0.0 Total Delay 8.5 11.5 8.5 19.2 Queue Length 50th (ft) 58 8 45 67 Queue Length 95th (ft) 123 33 94 155 Internal Link Dist (ft) 379 270 218 Turn Bay Length (ft) 115 115 Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	v/c Ratio	0.53	0.26	0.36	0.64	
Total Delay 8.5 11.5 8.5 19.2 Queue Length 50th (ft) 58 8 45 67 Queue Length 95th (ft) 123 33 94 155 Internal Link Dist (ft) 379 270 218 Turn Bay Length (ft) 115 115 Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	Control Delay	8.5	11.5	8.5	19.2	
Queue Length 50th (ft) 58 8 45 67 Queue Length 95th (ft) 123 33 94 155 Internal Link Dist (ft) 379 270 218 Turn Bay Length (ft) 115 115 Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	Queue Delay	0.0	0.0	0.0	0.0	
Queue Length 95th (ft) 123 33 94 155 Internal Link Dist (ft) 379 270 218 Turn Bay Length (ft) 115 115 Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	Total Delay	8.5	11.5	8.5	19.2	
Internal Link Dist (ft) 379 270 218 Turn Bay Length (ft) 115 115 Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	Queue Length 50th (ft)	58	8	45	67	
Turn Bay Length (ft) 115 Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	Queue Length 95th (ft)	123	33	94	155	
Base Capacity (vph) 3267 486 3515 1360 Starvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.28 0.13 0.18 0.26	Internal Link Dist (ft)	379		270	218	
Starvation Cap Reductn 0	Turn Bay Length (ft)		115			
Spillback Cap Reductn000Storage Cap Reductn000Reduced v/c Ratio0.280.130.180.26	Base Capacity (vph)	3267	486	3515	1360	
Storage Cap Reductn000Reduced v/c Ratio0.280.130.180.26	Starvation Cap Reductn	0	0	0	0	
Reduced v/c Ratio 0.28 0.13 0.18 0.26	Spillback Cap Reductn	0	0	0	0	
	Storage Cap Reductn	0	0	0	0	
Intersection Summary	Reduced v/c Ratio	0.28	0.13	0.18	0.26	
Intersection Summary	Intersection Summary					
	Intersection Summary					

1

NBL

€

WBL

WBT

EBT

3: Melody Dr & Creston Rd

Queues

IS/MND Attachment 8 Existing AM

IS/MND Attachment 8 Existing AM HCM Signalized Intersection Capacity Analysis

Creston Road Multi-Family 3: Melody Dr & Creston Rd

	-	\mathbf{r}	4	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations			۲	††	¥			
Traffic Volume (vph)	505	250	52	527	245	54		
Future Volume (vph)	505	250	52	527	245	54		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.5	1700	4.5	4.5	4.0	1700		
Lane Util. Factor	0.95		1.00	0.95	1.00			
Frpb, ped/bikes	0.99		1.00	1.00	1.00			
Flpb, ped/bikes	1.00		0.99	1.00	1.00			
Frt	0.95		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3317		1760	3539	1741			
Flt Permitted	1.00		0.27	1.00	0.96			
Satd. Flow (perm)	3317		491	3539	1741			
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84		
Adj. Flow (vph)	601	298	62	627	292	64		
RTOR Reduction (vph)	72	290	02	027	8	04		
Lane Group Flow (vph)	827	0	62	627	348	0		
Confl. Peds. (#/hr)	027	14	14	027	15	4		
Turn Type	NA		Perm	NA	Prot			
Protected Phases	2		T CHII	6	8			
Permitted Phases	2		6	U	0			
Actuated Green, G (s)	22.9		22.9	22.9	14.6			
Effective Green, g (s)	22.9		22.9	22.9	14.6			
Actuated g/C Ratio	0.50		0.50	0.50	0.32			
Clearance Time (s)	4.5		4.5	4.5	4.0			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)	1651		244	1761	552			
v/s Ratio Prot	c0.25		211	0.18	c0.20			
v/s Ratio Perm	00.20		0.13	0.10	00.20			
v/c Ratio	0.50		0.25	0.36	0.63			
Uniform Delay, d1	7.7		6.6	7.0	13.4			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.2		0.6	0.1	2.3			
Delay (s)	8.0		7.2	7.2	15.7			
Level of Service	A		A	A	В			
Approach Delay (s)	8.0			7.2	15.7			
Approach LOS	A			A	В			
Intersection Summary								
HCM 2000 Control Delay			9.1	H	CM 2000	Level of Service	А	
HCM 2000 Volume to Capa	acity ratio		0.55					
Actuated Cycle Length (s)			46.0		um of lost		8.5	
Intersection Capacity Utiliz	ation		67.1%	IC	U Level a	of Service	С	
Analysis Period (min)			15					
c Critical Lane Group								

Movement EBT EBR WBL WBT NBL NBR Lane Configurations
Lane Configurations Image: Configuration in the image: Configuratine in the image: Configuration in the image: Configuration in th
Traffic Volume (veh/h)5052505252724554Future Volume (veh/h)5052505252724554Initial Q (Qb), veh000000Ped-Bike Adj(A_pbT)0.991.001.001.000.98Parking Bus, Adj1.001.001.001.001.00Work Zone On ApproachNoNoNoAdj Sat Flow, veh/h/In1870187018701870Adj Flow Rate, veh/h60129862627292Peak Hour Factor0.840.840.840.840.84Percent Heavy Veh, %22222Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s), veh/h/ln17771647618177717370
Future Volume (veh/h)5052505252724554Initial Q (Qb), veh000000Ped-Bike Adj(A_pbT)0.991.001.001.000.98Parking Bus, Adj1.001.001.001.001.001.00Work Zone On ApproachNoNoNoNoAdj Sat Flow, veh/h/In18701870187018701870Adj Flow Rate, veh/h6012986262729264Peak Hour Factor0.840.840.840.840.840.84Percent Heavy Veh, %222222Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.280.285at Flow, veh/h2383113561836471421311Grp Volume(v), veh/h4664336262735700618177717370
Ped-Bike Adj(A_pbT) 0.99 1.00 1.00 0.98 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 Adj Flow Rate, veh/h 601 298 62 627 292 64 Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Percent Heavy Veh, % 2
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 Adj Flow Rate, veh/h 601 298 62 627 292 64 Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Percent Heavy Veh, % 2 3 3
Work Zone On ApproachNoNoAdj Sat Flow, veh/h/ln18701870187018701870Adj Flow Rate, veh/h6012986262729264Peak Hour Factor0.840.840.840.840.840.84Percent Heavy Veh, %22222Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s), veh/h/ln17771647618177717370
Adj Sat Flow, veh/h/ln187018701870187018701870Adj Flow Rate, veh/h6012986262729264Peak Hour Factor0.840.840.840.840.840.84Percent Heavy Veh, %22222Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s), veh/h/ln17771647618177717370
Adj Flow Rate, veh/h6012986262729264Peak Hour Factor0.840.840.840.840.840.84Percent Heavy Veh, %22222Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s), veh/h/ln17771647618177717370
Peak Hour Factor0.840.840.840.840.840.84Percent Heavy Veh, %22222Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s), veh/h/ln17771647618177717370
Percent Heavy Veh, %222222Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s),veh/h/ln17771647618177717370
Cap, veh/h1149569381178340589Arrive On Green0.500.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s), veh/h/ln17771647618177717370
Arrive On Green0.500.500.500.500.280.28Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s), veh/h/ln17771647618177717370
Sat Flow, veh/h2383113561836471421311Grp Volume(v), veh/h466433626273570Grp Sat Flow(s),veh/h/ln17771647618177717370
Grp Volume(v), veh/h466433626273570Grp Sat Flow(s),veh/h/ln17771647618177717370
Grp Sat Flow(s),veh/h/ln 1777 1647 618 1777 1737 0
Q Serve(g_s), s 7.1 7.1 3.0 4.3 7.4 0.0
Cycle Q Clear(g_c), s 7.1 7.1 10.1 4.3 7.4 0.0
Prop In Lane 0.69 1.00 0.82 0.18
Lane Grp Cap(c), veh/h 892 827 381 1783 495 0
V/C Ratio(X) 0.52 0.52 0.16 0.35 0.72 0.00
Avail Cap(c_a), veh/h 2675 2480 1001 5350 1482 0
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 0.00
Uniform Delay (d), s/veh 6.7 6.7 10.1 6.0 12.8 0.0
Incr Delay (d2), s/veh 0.5 0.5 0.2 0.1 2.0 0.0
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 1.6 1.5 0.3 0.9 2.6 0.0
Unsig. Movement Delay, s/veh
LnGrp Delay(d),s/veh 7.2 7.2 10.3 6.1 14.8 0.0
LnGrp LOS A A B A B A
Approach Vol, veh/h 899 689 357
Approach Delay, s/veh7.26.514.8
Approach LOS A A B
Timer - Assigned Phs 2 6
Phs Duration (G+Y+Rc), s 24.5 24.5
Change Period (Y+Rc), s 4.5 4.5
Max Green Setting (Gmax), s 60.0 60.0
Max Q Clear Time (g_c+I1), s 9.1 12.1
Green Ext Time (p_c), s 7.0 5.6
Intersection Summary
HCM 6th Ctrl Delay 8.4
HCM 6th LOS A

Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	- 11	∱î ≽		٦	1
Traffic Vol, veh/h	46	518	547	22	3	25
Future Vol, veh/h	46	518	547	22	3	25
Conflicting Peds, #/hr	9	0	0	9	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	60
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	53	602	636	26	3	29

Major/Minor	Major1	Ма	jor2	N	/linor2	
Conflicting Flow All	671	0	-	0	1065	340
Stage 1	-	-	-	-	658	-
Stage 2	-	-	-	-	407	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	915	-	-	-	218	656
Stage 1	-	-	-	-	477	-
Stage 2	-	-	-	-	641	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	907	-	-	-	202	650
Mov Cap-2 Maneuver	-	-	-	-	202	-
Stage 1	-	-	-	-	446	-
Stage 2	-	-	-	-	635	-
Approach	EB		WB		SB	
HCM Control Delay s			0		12.1	

nom control Delay, 5	0.0	0	12.1		
HCM LOS			В		

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	907	-	-	- 202	650
HCM Lane V/C Ratio	0.059	-	-	- 0.017	0.045
HCM Control Delay (s)	9.2	-	-	- 23.1	10.8
HCM Lane LOS	А	-	-	- C	В
HCM 95th %tile Q(veh)	0.2	-	-	- 0.1	0.1

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

IS/MND Attachment 8 Existing AM
Queues

	٠	-	-	1	1
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Group Flow (vph)	102	511	860	371	87
v/c Ratio	0.32	0.27	0.67	0.49	0.21
Control Delay	42.1	11.9	24.5	34.6	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	42.1	11.9	24.5	34.6	10.9
Queue Length 50th (ft)	29	31	103	53	0
Queue Length 95th (ft)	133	153	355	190	42
Internal Link Dist (ft)		581	1125	505	
Turn Bay Length (ft)	125			120	
Base Capacity (vph)	746	3223	2731	2131	1005
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.14	0.16	0.31	0.17	0.09
Intersection Summary					

IS/MND Attachment 8 Existing AM HCM Signalized Intersection Capacity Analysis

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

	٦	+	Ļ	•	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	<u> </u>	† †	*/B1	WDI	<u></u> ነካ		
Traffic Volume (vph)	89	TT 445	T ₽ 486	262	323	76	
Future Volume (vph)	89	445	486	262	323	76	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.5	4.1	4.1	1700	3.5	3.5	
Lane Util. Factor	1.00	0.95	0.95		0.97	1.00	
Frpb, ped/bikes	1.00	1.00	0.95		1.00	0.98	
	1.00	1.00	1.00		0.99	1.00	
Flpb, ped/bikes							
Frt Elt Drotoctod	1.00	1.00	0.95		1.00	0.85	
Flt Protected	0.95	1.00	1.00		0.95	1.00 15.25	
Satd. Flow (prot)	1752	3505	3300		3361	1535	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	1752	3505	3300		3361	1535	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87	
Adj. Flow (vph)	102	511	559	301	371	87	
RTOR Reduction (vph)	0	0	43	0	0	68	
Lane Group Flow (vph)	102	511	817	0	371	19	
Confl. Peds. (#/hr)	6			6	5	7	
Confl. Bikes (#/hr)				1			
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%	
Turn Type	Prot	NA	NA		Perm	Perm	
Protected Phases	5	2	6				
Permitted Phases					4	4	
Actuated Green, G (s)	9.0	40.6	28.1		16.6	16.6	
Effective Green, g (s)	9.0	40.6	28.1		16.6	16.6	
Actuated g/C Ratio	0.12	0.54	0.37		0.22	0.22	
Clearance Time (s)	3.5	4.1	4.1		3.5	3.5	
Vehicle Extension (s)	2.0	2.0	2.0		2.0	2.0	
· · ·	2.0	1894	1234		742	339	
Lane Grp Cap (vph)					742	339	
v/s Ratio Prot	c0.06	0.15	c0.25		-0.11	0.01	
v/s Ratio Perm	0.40	0.07	0.//		c0.11	0.01	
v/c Ratio	0.49	0.27	0.66		0.50	0.06	
Uniform Delay, d1	30.9	9.3	19.6		25.6	23.1	
Progression Factor	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.7	0.0	1.0		0.2	0.0	
Delay (s)	31.6	9.3	20.6		25.8	23.1	
Level of Service	С	А	С		С	С	
Approach Delay (s)		13.0	20.6		25.3		
Approach LOS		В	С		С		
Intersection Summary							
HCM 2000 Control Delay			19.3	Н	CM 2000	Level of Servi	C
HCM 2000 Volume to Capa	acity ratio		0.52		2 2000		
Actuated Cycle Length (s)			75.1	S	um of los	t time (s)	
Intersection Capacity Utiliza	ation		48.8%			of Service	
Analysis Period (min)			40.070				
c Critical Lane Group			15				
c Chilicai Lahe Group							

Int Delay, s/veh	2.4						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	Į
Lane Configurations	Y		٦	^	∱ î,		
Traffic Vol, veh/h	133	6	5	324	332	128	}
Future Vol, veh/h	133	6	5	324	332	128	}
Conflicting Peds, #/hr	0	0	3	0	0	3	;
Sign Control	Stop	Stop	Free	Free	Free	Free	,
RT Channelized	-	None	-	None	-	None	ì
Storage Length	0	-	200	-	-	-	-
Veh in Median Storage	# 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	88	88	88	88	88	88	}
Heavy Vehicles, %	3	3	3	3	3	3	5
Mvmt Flow	151	7	6	368	377	145	;

Major/Minor	Minor2	Ν	Najor1	Majo	or2					
Conflicting Flow All	649	264	525	0	-	0				
Stage 1	453	-	-	-	-	-				
Stage 2	196	-	-	-	-	-				
Critical Hdwy	6.86	6.96	4.16	-	-	-				
Critical Hdwy Stg 1	5.86	-	-	-	-	-				
Critical Hdwy Stg 2	5.86	-	-	-	-	-				
Follow-up Hdwy	3.53	3.33	2.23	-	-	-				
Pot Cap-1 Maneuver	400	731	1031	-	-	-				
Stage 1	604	-	-	-	-	-				
Stage 2	815	-	-	-	-	-				
Platoon blocked, %				-	-	-				
Mov Cap-1 Maneuver	⁻ 395	729	1028	-	-	-				
Mov Cap-2 Maneuver	486	-	-	-	-	-				
Stage 1	599	-	-	-	-	-				
Stage 2	813	-	-	-	-	-				

Approach	EB	NB	SB
HCM Control Delay, s	15.7	0.1	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBT E	BLn1	SBT	SBR
Capacity (veh/h)	1028	-	493	-	-
HCM Lane V/C Ratio	0.006	-	0.32	-	-
HCM Control Delay (s)	8.5	-	15.7	-	-
HCM Lane LOS	А	-	С	-	-
HCM 95th %tile Q(veh)	0	-	1.4	-	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	4		۰¥	
Traffic Vol, veh/h	22	674	736	15	9	22
Future Vol, veh/h	22	674	736	15	9	22
Conflicting Peds, #/hr	3	0	0	3	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	709	775	16	9	23

Major/Minor N	Major1	N	lajor2		Vinor2	
Conflicting Flow All	794	0	-	0	1542	786
Stage 1	-	-	-	-	786	-
Stage 2	-	-	-	-	756	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	827	-	-	-	127	392
Stage 1	-	-	-	-	449	-
Stage 2	-	-	-	-	464	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	825	-	-	-	120	391
Mov Cap-2 Maneuver	-	-	-	-	257	-
Stage 1	-	-	-	-	427	-
Stage 2	-	-	-	-	463	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		16.7	
HCM LOS					С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		825	-	-	-	340
HCM Lane V/C Ratio		0.028	-	-	-	0.096
HCM Control Delay (s))	9.5	-	-	-	16.7
HCM Lane LOS		А	-	-	-	С
HCM 95th %tile Q(veh)		0.1			-	0.3

Int Delay, s/veh	4.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	et -		٦	1
Traffic Vol, veh/h	170	598	568	44	21	190
Future Vol, veh/h	170	598	568	44	21	190
Conflicting Peds, #/hr	1	0	0	1	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	60	-	-	-	0	100
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	195	687	653	51	24	218

Major/Minor	Major1	Ν	1ajor2		Minor2	
Conflicting Flow All	705	0	-	0	1757	681
Stage 1	-	-	-	-	680	-
Stage 2	-	-	-	-	10//	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuve	r 893	-	-	-	93	450
Stage 1	-	-	-	-	503	-
Stage 2	-	-	-	-	327	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuve		-	-	-	72	449
Mov Cap-2 Maneuve	er -	-	-	-	72	-
Stage 1	-	-	-	-	392	-
Stage 2	-	-	-	-	327	-
Approach	EB		WB		SB	
HCM Control Delay,	s 2.2		0		26.2	
HCM LOS					D	
Minor Lane/Maior M	vmt	EBL	EBT	WBT	WBR	SBLn1 SBL

IVITION LATE/IVIAJON IVIVITIL	EDL	EDI	VVDI	WOR SOLUT	SPLIIZ	
Capacity (veh/h)	892	-	-	- 72	449	
HCM Lane V/C Ratio	0.219	-	-	- 0.335	0.486	
HCM Control Delay (s)	10.2	-	-	- 78.4	20.4	
HCM Lane LOS	В	-	-	- F	С	
HCM 95th %tile Q(veh)	0.8	-	-	- 1.3	2.6	

	-	•	-	•
Lane Group	EBT	• WBL	WBT	NBL
Lane Group Flow (vph)	681	53	474	208
v/c Ratio	0.39	0.15	0.26	0.43
Control Delay	7.4	8.8	7.3	12.8
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	7.4	8.8	7.3	12.8
Queue Length 50th (ft)	32	5	23	33
Queue Length 95th (ft)	110	30	80	67
Internal Link Dist (ft)	379		270	218
Turn Bay Length (ft)		115		
Base Capacity (vph)	3370	709	3539	1479
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.20	0.07	0.13	0.14
Intersection Summary				

IS/MND Attachment 8 Existing PM Queues

IS/MND Attachment 8 Existing PM HCM Signalized Intersection Capacity Analysis

Creston Road Multi-Family 3: Melody Dr & Creston Rd

	-	\mathbf{i}	∢	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	≜ †}	LDR	1	101	Y	HBR -		
Traffic Volume (vph)	492	141	49	441	136	58		
Future Volume (vph)	492	141	49	441	136	58		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.5	1700	4.5	4.5	4.0	1700		
Lane Util. Factor	0.95		1.00	0.95	1.00			
Frpb, ped/bikes	0.93		1.00	1.00	1.00			
Flpb, ped/bikes	1.00		0.99	1.00	1.00			
Fipb, peu/bikes Frt	0.97		1.00	1.00	0.96			
Flt Protected	1.00		0.95	1.00	0.97			
Satd. Flow (prot)	3388		1758	3539	1719			
Flt Permitted	1.00		0.39	1.00	0.97			
Satd. Flow (perm)	3388		713	3539	1719		 	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93		
Adj. Flow (vph)	529	152	53	474	146	62		
RTOR Reduction (vph)	31	0	0	0	16	0		
Lane Group Flow (vph)	650	0	53	474	192	0		
Confl. Peds. (#/hr)		13	13		10	7		
Confl. Bikes (#/hr)		8						
Turn Type	NA		Perm	NA	Prot			
Protected Phases	2			6	8			
Permitted Phases			6					
Actuated Green, G (s)	20.5		20.5	20.5	11.1			
Effective Green, g (s)	20.5		20.5	20.5	11.1			
Actuated g/C Ratio	0.51		0.51	0.51	0.28			
Clearance Time (s)	4.5		4.5	4.5	4.0			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)	1732		364	1809	475			
v/s Ratio Prot	c0.19		304	0.13	c0.11			
v/s Ratio Perm	CU. 19		0.07	0.15	CO. I I			
	0.20			0.27	0.40			
v/c Ratio	0.38		0.15	0.26	0.40			
Uniform Delay, d1	5.9		5.2	5.5	11.8			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.1		0.2	0.1	0.6			
Delay (s)	6.1		5.4	5.6	12.4			
Level of Service	А		А	A	В			
Approach Delay (s)	6.1			5.6	12.4			
Approach LOS	А			А	В			
Intersection Summary								
HCM 2000 Control Delay			6.8	Н	CM 2000	Level of Service	А	
HCM 2000 Volume to Capa	acity ratio		0.39					
Actuated Cycle Length (s)	, 		40.1	Si	um of lost	time (s)	8.5	
Intersection Capacity Utiliza	ation		58.8%		CU Level o		В	
Analysis Period (min)			15					
c Critical Lano Croup								

c Critical Lane Group

	-	\mathbf{r}	-	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	≜ î∌	LDIX	1	101	¥	HER		
Traffic Volume (veh/h)	492	141	49	441	136	58		
Future Volume (veh/h)	492	141	49	441	136	58		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	0	0.96	1.00	0	1.00	0.98		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	1.00	No	No	1.00		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	529	152	53	474	146	62		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	1540	440	557	2026	224	95		
Arrive On Green	0.57	0.57	0.57	0.57	0.19	0.19		
Sat Flow, veh/h	2795	772	757	3647	1194	507		
				474				
Grp Volume(v), veh/h	347	334	53		209	0		
Grp Sat Flow(s),veh/h/ln	1777	1697	757	1777	1710	0		
2 Serve(g_s), s	3.7	3.7	1.4	2.3	4.0	0.0		
Cycle Q Clear(g_c), s	3.7	3.7	5.1	2.3	4.0	0.0		
rop In Lane	1010	0.45	1.00	2024	0.70	0.30		
ane Grp Cap(c), veh/h	1013	967	557	2026	321	0		
//C Ratio(X)	0.34	0.35	0.10	0.23	0.65	0.00		
Avail Cap(c_a), veh/h	3038	2902	1419	6077	1657	0		
CM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00		
Iniform Delay (d), s/veh	4.0	4.0	5.4	3.7	13.2	0.0		
ncr Delay (d2), s/veh	0.2	0.2	0.1	0.1	2.2	0.0		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
ile BackOfQ(50%),veh/In	0.5	0.5	0.1	0.3	1.4	0.0		
nsig. Movement Delay, s/veh								
nGrp Delay(d),s/veh	4.2	4.3	5.5	3.8	15.4	0.0		
nGrp LOS	А	A	А	A	В	А		
pproach Vol, veh/h	681			527	209			
pproach Delay, s/veh	4.2			4.0	15.4			
pproach LOS	А			А	В			
imer - Assigned Phs		2				6	8	
Phs Duration (G+Y+Rc), s		24.5				24.5	10.6	
Change Period (Y+Rc), s		4.5				4.5	4.0	
lax Green Setting (Gmax), s		60.0				60.0	34.0	
Nax Q Clear Time (g_c+I1), s		5.7				7.1	6.0	
Green Ext Time (p_c), s		4.8				3.9	0.6	
ntersection Summary								
CM 6th Ctrl Delay			5.8					
CM 6th LOS			A					
			/ \					

Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	^	∱î ≽		٦	1
Traffic Vol, veh/h	119	434	418	49	36	72
Future Vol, veh/h	119	434	418	49	36	72
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	60
Veh in Median Storage	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	131	477	459	54	40	79

Major/Minor I	Major1	Ma	jor2	Ν	1inor2	
Conflicting Flow All	513	0	-	0	987	257
Stage 1	-	-	-	-	486	-
Stage 2	-	-	-	-	501	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	1049	-	-	-	244	742
Stage 1	-	-	-	-	584	-
Stage 2	-	-	-	-	574	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1049	-	-	-	214	742
Mov Cap-2 Maneuver	-	-	-	-	214	-
Stage 1	-	-	-	-	511	-
Stage 2	-	-	-	-	574	-
Approach	EB		WB		SB	

Approach	EB	WB	SB
HCM Control Delay, s	1.9	0	15.5
HCM LOS			С

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	1049	-	-	- 214	742
HCM Lane V/C Ratio	0.125	-	-	- 0.185	0.107
HCM Control Delay (s)	8.9	-	-	- 25.6	10.4
HCM Lane LOS	А	-	-	- D	В
HCM 95th %tile Q(veh)	0.4	-	-	- 0.7	0.4

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

Central Coast Transportation Consulting

	٦	→	+	1	-
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Group Flow (vph)	63	417	761	347	79
v/c Ratio	0.17	0.22	0.64	0.41	0.18
Control Delay	29.4	8.7	18.0	24.2	9.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	29.4	8.7	18.0	24.2	9.0
Queue Length 50th (ft)	15	21	74	42	0
Queue Length 95th (ft)	84	124	274	159	41
Internal Link Dist (ft)		581	1125	505	
Turn Bay Length (ft)	125			120	
Base Capacity (vph)	953	3454	3067	2642	1219
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.07	0.12	0.25	0.13	0.06
Intersection Summary					

IS/MND Attachment 8 Existing PM HCM Signalized Intersection Capacity Analysis

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

	≯	+	t	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	۲	††	≜ †}		ኘካ	1		
Traffic Volume (vph)	57	375	411	274	312	71		
Future Volume (vph)	57	375	411	274	312	71		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.5	4.1	4.1		3.5	3.5		
Lane Util. Factor	1.00	0.95	0.95		0.97	1.00		
Frpb, ped/bikes	1.00	1.00	0.99		1.00	0.99		
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	1.00	0.94		1.00	0.85		
Flt Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1770	3539	3309		3433	1560		
Flt Permitted	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (perm)	1770	3539	3309		3433	1560		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	63	417	457	304	347	79		
RTOR Reduction (vph)	0	0	73	0	0	60		
Lane Group Flow (vph)	63	417	688	0	347	19		
Confl. Peds. (#/hr)	1			1		2		
Confl. Bikes (#/hr)				1				
Turn Type	Prot	NA	NA		Perm	Perm		
Protected Phases	5	2	6		1 01111	1 01111		
Permitted Phases		-	Ū		4	4		
Actuated Green, G (s)	7.5	29.7	18.7		13.5	13.5		
Effective Green, g (s)	7.5	29.7	18.7		13.5	13.5		
Actuated g/C Ratio	0.13	0.52	0.33		0.24	0.24		
Clearance Time (s)	3.5	4.1	4.1		3.5	3.5		
Vehicle Extension (s)	2.0	2.0	2.0		2.0	2.0		
Lane Grp Cap (vph)	232	1840	1083		811	368		
v/s Ratio Prot	c0.04	0.12	c0.21		511	000		
v/s Ratio Perm	00.07	0.12	00.21		c0.10	0.01		
v/c Ratio	0.27	0.23	0.64		0.43	0.05		
Uniform Delay, d1	22.3	7.5	16.3		18.5	16.8		
Progression Factor	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	0.2	0.0	0.9		0.1	0.0		
Delay (s)	22.6	7.5	17.2		18.7	16.9		
Level of Service	C	7.5 A	B		В	B		
Approach Delay (s)	0	9.5	17.2		18.3			
Approach LOS		7.5 A	B		10.5 B			
			U		U			
Intersection Summary			15.0		014 0000			
HCM 2000 Control Delay	14 1 ¹		15.3	Н	CM 2000	Level of Servi	се	
HCM 2000 Volume to Capa			0.46	~				
Actuated Cycle Length (s)			57.1		um of los			
Intersection Capacity Utiliz	ation		46.7%	IC	U Level	of Service		
Analysis Period (min)			15					
c Critical Lane Group								

c Critical Lane Group

Int Delay, s/veh	2.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	1
Lane Configurations	Y		٦	- 11	_ ^ ↑₽		
Traffic Vol, veh/h	130	6	2	234	303	102	2
Future Vol, veh/h	130	6	2	234	303	102) -
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	ķ
RT Channelized	-	None	-	None	-	None	ļ
Storage Length	0	-	200	-	-	-	
Veh in Median Storage	# 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	86	86	86	86	86	86)
Heavy Vehicles, %	3	3	3	3	3	3	5
Mvmt Flow	151	7	2	272	352	119)

Major/Minor	Minor2	Ν	Najor1	Maj	or2	
Conflicting Flow All	552	236	471	0	-	0
Stage 1	412	-	-	-	-	-
Stage 2	140	-	-	-	-	-
Critical Hdwy	6.86	6.96	4.16	-	-	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	2.23	-	-	-
Pot Cap-1 Maneuver	461	763	1080	-	-	-
Stage 1	634	-	-	-	-	-
Stage 2	869	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		763	1080	-	-	-
Mov Cap-2 Maneuver	531	-	-	-	-	-
Stage 1	633	-	-	-	-	-
Stage 2	869	-	-	-	-	-

Approach	EB	NB	SB	
HCM Control Delay, s	14.5	0.1	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT EB	Ln1	SBT	SBR
Capacity (veh/h)	1080	-	538	-	-
HCM Lane V/C Ratio	0.002	- 0.	294	-	-
HCM Control Delay (s)	8.3	- 1	14.5	-	-
HCM Lane LOS	А	-	В	-	-
HCM 95th %tile Q(veh)	0	-	1.2	-	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	4		۰¥	
Traffic Vol, veh/h	24	805	942	7	6	25
Future Vol, veh/h	24	805	942	7	6	25
Conflicting Peds, #/hr	6	0	0	6	3	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	27	915	1070	8	7	28

Major/Minor	Major1	N	/lajor2	[Vinor2	
Conflicting Flow All	1084	0	-	0	2052	1080
Stage 1	-	-	-	-	1080	-
Stage 2	-	-	-	-	972	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	643	-	-	-	61	265
Stage 1	-	-	-	-	326	-
Stage 2	-	-	-	-	367	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	639	-	-	-	55	263
Mov Cap-2 Maneuver	-	-	-	-	174	-
Stage 1	-	-	-	-	296	-
Stage 2	-	-	-	-	365	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		22.6	
HCM LOS					С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		639	-	-	-	239
HCM Lane V/C Ratio		0.043	-	-	-	0.147
HCM Control Delay (s))	10.9	-	-	-	22.6
HCM Lane LOS		В	-	-	-	С
HCM 95th %tile Q(veh		0.1				0.5

In	łor	·c r	ect	in	n	
	ICI	30	τ.	IU		

Int Delay, s/veh	8.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	۲.	•	et		ľ	1
Traffic Vol, veh/h	171	741	712	72	33	223
Future Vol, veh/h	171	741	712	72	33	223
Conflicting Peds, #/hr	5	0	0	5	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	60	-	-	-	0	100
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	192	833	800	81	37	251

Major/Minor	Major1	Ma	ajor2	1	Vinor2	
Conflicting Flow All	886	0	-	0	2063	846
Stage 1	-	-	-	-	846	-
Stage 2	-	-	-	-	1217	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	764	-	-	-	60	362
Stage 1	-	-	-	-	421	-
Stage 2	-	-	-	-	280	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	44	360
Mov Cap-2 Maneuver	-	-	-	-	44	-
Stage 1	-	-	-	-	313	-
Stage 2	-	-	-	-	279	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		60.3	
HCM LOS			v		F	
					-	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2	
Capacity (veh/h)	760	-	-	- 44	360	
HCM Lane V/C Ratio	0.253	-	-	- 0.843	0.696	
HCM Control Delay (s)	11.3	-	-	- 231.1	35	
HCM Lane LOS	В	-	-	- F	E	
HCM 95th %tile Q(veh)	1	-	-	- 3.3	5	

IS/MND Attachment 8 EX+P AM

	•		+	•
	-	•)
Lane Group	EBT	WBL	WBT	NBL
Lane Group Flow (vph)	914	62	631	357
v/c Ratio	0.54	0.26	0.36	0.64
Control Delay	8.6	11.7	8.5	19.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	8.6	11.7	8.5	19.5
Queue Length 50th (ft)	61	8	46	68
Queue Length 95th (ft)	126	33	95	159
Internal Link Dist (ft)	379		270	218
Turn Bay Length (ft)		115		
Base Capacity (vph)	3261	474	3508	1354
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.28	0.13	0.18	0.26
Intersection Summary				

IS/MND Attachment 8 EX+P AM

Creston Road Multi-Family 3: Melody Dr & Creston Rd

HCM Signalized Intersection Capacity Analysis

	-	\mathbf{F}	∢	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	≜ †⊅	LDIX	<u> </u>	<u></u>	¥	HBR		
Traffic Volume (vph)	514	254	52	530	246	54		
Future Volume (vph)	514	254	52	530	246	54		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.5	1,00	4.5	4.5	4.0	1700		
Lane Util. Factor	0.95		1.00	0.95	1.00			
Frpb, ped/bikes	0.99		1.00	1.00	1.00			
Flpb, ped/bikes	1.00		0.99	1.00	1.00			
Frt	0.95		1.00	1.00	0.98			
Flt Protected	1.00		0.95	1.00	0.96			
Satd. Flow (prot)	3318		1760	3539	1742			
Flt Permitted	1.00		0.26	1.00	0.96			
Satd. Flow (perm)	3318		479	3539	1742			
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84		
Adj. Flow (vph)	612	302	62	631	293	64		
RTOR Reduction (vph)	72	0	02	001	275	04		
Lane Group Flow (vph)	842	0	62	631	349	0		
Confl. Peds. (#/hr)	042	14	14	001	15	4		
Turn Type	NA	17	Perm	NA	Prot	7		
Protected Phases	2		FCIIII	6	8			
Permitted Phases	Z		6	U	U			
Actuated Green, G (s)	23.1		23.1	23.1	14.7			
Effective Green, g (s)	23.1		23.1	23.1	14.7			
Actuated g/C Ratio	0.50		0.50	0.50	0.32			
Clearance Time (s)	4.5		4.5	4.5	4.0			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)	1655		238	1765	553			
v/s Ratio Prot	c0.25		230	0.18	c0.20			
v/s Ratio Perm	0.20		0.13	0.10	0.20			
v/c Ratio	0.51		0.13	0.36	0.63			
Uniform Delay, d1	7.8		6.7	7.1	13.5			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.2		0.6	0.1	2.4			
Delay (s)	8.0		7.3	7.2	15.8			
Level of Service	0.0 A		7.5 A	7.2 A	13.0 B			
Approach Delay (s)	8.0			7.2	15.8			
Approach LOS	0.0 A			A	B			
Intersection Summary								
HCM 2000 Control Delay			9.2	Н	CM 2000	Level of Service	А	
HCM 2000 Volume to Capa	acity ratio		0.56					
Actuated Cycle Length (s)			46.3		um of lost		8.5	
Intersection Capacity Utilization	ation		67.6%	IC	CU Level o	of Service	С	
Analysis Period (min)			15					
c Critical Lane Group								

HCM 6th Signalized Intersection Summary

	-	\mathbf{r}	1	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	≜ †₽		۲	† †	Y		
Traffic Volume (veh/h)	514	254	52	530	246	54	
Future Volume (veh/h)	514	254	52	530	246	54	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	Ū	0.99	1.00	Ū	1.00	0.98	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	612	302	62	631	293	64	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	1150	567	375	1782	406	89	
Arrive On Green	0.50	0.50	0.50	0.50	0.29	0.29	
Sat Flow, veh/h	2387	1131	609	3647	1422	311	
Grp Volume(v), veh/h	474	440	62	631	358	0	
Grp Sat Flow(s), veh/h/ln	1777	1648	609	1777	1737	0	
Q Serve(g_s), s	7.2	7.2	3.1	4.3	7.4	0.0	
Cycle Q Clear(g_c), s	7.2	7.2	10.3	4.3	7.4	0.0	
Prop In Lane	Ι.Ζ	0.69	1.00	4.3	0.82	0.0	
•	001	826	375	1782		0.18	
Lane Grp Cap(c), veh/h V/C Ratio(X)	891 0.53	0.53	0.17	0.35	496 0.72	0.00	
.,		2479	987			0.00	
Avail Cap(c_a), veh/h	2673			5346	1481		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	6.8	6.8	10.3	6.0	12.8	0.0	
Incr Delay (d2), s/veh	0.5	0.5	0.2	0.1	2.0	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	1.7	1.6	0.3	0.9	2.7	0.0	
Unsig. Movement Delay, s/veh		7.0	10 5		110		
LnGrp Delay(d),s/veh	7.3	7.3	10.5	6.1	14.8	0.0	
LnGrp LOS	А	А	В	Α	В	A	
Approach Vol, veh/h	914			693	358		
Approach Delay, s/veh	7.3			6.5	14.8		
Approach LOS	А			А	В		
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		24.5				24.5	15.4
Change Period (Y+Rc), s		4.5				4.5	4.0
Max Green Setting (Gmax), s		60.0				60.0	34.0
Max Q Clear Time (q_c+I1), s		9.2				12.3	9.4
Green Ext Time (p_c), s		7.2				5.6	1.2
Intersection Summary							
HCM 6th Ctrl Delay			8.4				
HCM 6th LOS			A				
			Л				

Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	^	∱î ≽		٦	1
Traffic Vol, veh/h	47	526	550	22	3	25
Future Vol, veh/h	47	526	550	22	3	25
Conflicting Peds, #/hr	9	0	0	9	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	60
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	55	612	640	26	3	29

Major/Minor	Major1	М	ajor2	Ν	/linor2	
Conflicting Flow All	675	0	-	0	1078	342
Stage 1	-	-	-	-	662	-
Stage 2	-	-	-	-	416	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	912	-	-	-	213	654
Stage 1	-	-	-	-	475	-
Stage 2	-	-	-	-	634	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuve		-	-	-	196	648
Mov Cap-2 Maneuve	- r	-	-	-	196	-
Stage 1	-	-	-	-	442	-
Stage 2	-	-	-	-	628	-
Approach	EB		WB		SB	
HCM Control Delay,	s 0.8		0		12.2	
HCM LOS					В	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2	
Capacity (veh/h)	904	-	-	- 196	648	
HCM Lane V/C Ratio	0.06	-	-	- 0.018	0.045	
HCM Control Delay (s)	9.2	-	-	- 23.7	10.8	
HCM Lane LOS	А	-	-	- C	В	
HCM 95th %tile Q(veh)	0.2	-	-	- 0.1	0.1	

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

	۶	-	-	1	1
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Group Flow (vph)	103	520	863	371	87
v/c Ratio	0.33	0.28	0.67	0.49	0.21
Control Delay	42.2	11.9	24.6	34.7	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	42.2	11.9	24.6	34.7	10.9
Queue Length 50th (ft)	30	32	105	53	0
Queue Length 95th (ft)	134	156	358	191	42
Internal Link Dist (ft)		581	1125	505	
Turn Bay Length (ft)	125			120	
Base Capacity (vph)	744	3220	2731	2126	1003
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.14	0.16	0.32	0.17	0.09
Intersection Summary					

Queues

IS/MND Attachment 8 EX+P AM

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

HCM Signalized Intersection Capacity Analysis

				-		-		
Novement	EBL	EBT	WBT	WBR	SBL	SBR		
ane Configurations	1	† †	≜ †⊅		ኘካ	1		
Traffic Volume (vph)	90	452	489	262	323	76		
Future Volume (vph)	90	452	489	262	323	76		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Fotal Lost time (s)	3.5	4.1	4.1	1700	3.5	3.5		
_ane Util. Factor	1.00	0.95	0.95		0.97	1.00		
Frpb, ped/bikes	1.00	1.00	0.99		1.00	0.98		
Flpb, ped/bikes	1.00	1.00	1.00		0.99	1.00		
Frt	1.00	1.00	0.95		1.00	0.85		
Flt Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1752	3505	3300		3361	1535		
Flt Permitted	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (perm)	1752	3505	3300		3361	1535		
	0.87	0.87	0.87	0.87	0.87	0.87		
Peak-hour factor, PHF Adj. Flow (vph)	103	520	0.87 562	301	371	0.87 87		
2 1 2	103		502 42					
RTOR Reduction (vph)		0		0	0	68		
ane Group Flow (vph)	103	520	821	0	371	19		
Confl. Peds. (#/hr)	6			6	5	7		
Confl. Bikes (#/hr)	20/	20/	20/	20/	20/	20/		
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%		
Turn Type	Prot	NA	NA		Perm	Perm		
Protected Phases	5	2	6					
Permitted Phases	0.0	10.0			4	4		
Actuated Green, G (s)	9.0	40.8	28.3		16.7	16.7		
Effective Green, g (s)	9.0	40.8	28.3		16.7	16.7		
Actuated g/C Ratio	0.12	0.54	0.38		0.22	0.22		
Clearance Time (s)	3.5	4.1	4.1		3.5	3.5		
Vehicle Extension (s)	2.0	2.0	2.0		2.0	2.0		
_ane Grp Cap (vph)	209	1896	1238		744	339		
//s Ratio Prot	c0.06	0.15	c0.25					
//s Ratio Perm					c0.11	0.01		
//c Ratio	0.49	0.27	0.66		0.50	0.06		
Jniform Delay, d1	31.1	9.3	19.6		25.7	23.1		
Progression Factor	1.00	1.00	1.00		1.00	1.00		
ncremental Delay, d2	0.7	0.0	1.0		0.2	0.0		
Delay (s)	31.7	9.4	20.6		25.9	23.2		
_evel of Service	С	А	С		С	С		
Approach Delay (s)		13.1	20.6		25.4			
Approach LOS		В	С		С			
ntersection Summary								
HCM 2000 Control Delay			19.3	Н	CM 2000	Level of Ser	vice B	
HCM 2000 Volume to Capaci	ty ratio		0.52					
Actuated Cycle Length (s)			75.4	S	um of lost	time (s)	14.6	
ntersection Capacity Utilization	on		48.9%			of Service	А	
			15					
Analysis Period (min)			10					

Int Delay, s/veh	2.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	ł
Lane Configurations	Y		ኘ	††	∱ î≽		
Traffic Vol, veh/h	142	6	5	325	332	131	
Future Vol, veh/h	142	6	5	325	332	131	
Conflicting Peds, #/hr	0	0	3	0	0	3	;
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	ý
Storage Length	0	-	200	-	-	-	-
Veh in Median Storage	# 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	88	88	88	88	88	88	}
Heavy Vehicles, %	3	3	3	3	3	3	5
Mvmt Flow	161	7	6	369	377	149)

Major/Minor	Minor2	Ν	Najor1	Majo	or2	
Conflicting Flow All	652	266	529	0	-	0
Stage 1	455	-	-	-	-	-
Stage 2	197	-	-	-	-	-
Critical Hdwy	6.86	6.96	4.16	-	-	-
Critical Hdwy Stg 1	5.86	-	-	-	-	-
Critical Hdwy Stg 2	5.86	-	-	-	-	-
Follow-up Hdwy	3.53	3.33	2.23	-	-	-
Pot Cap-1 Maneuver	398	729	1027	-	-	-
Stage 1	603	-	-	-	-	-
Stage 2	814	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	r 393	727	1024	-	-	-
Mov Cap-2 Maneuver	r 484	-	-	-	-	-
Stage 1	598	-	-	-	-	-
Stage 2	812	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	16.1	0.1	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1024	- 491	-	-
HCM Lane V/C Ratio	0.006	- 0.343	-	-
HCM Control Delay (s)	8.5	- 16.1	-	-
HCM Lane LOS	А	- C	-	-
HCM 95th %tile Q(veh)	0	- 1.5	-	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	4		۰¥	
Traffic Vol, veh/h	22	701	752	15	9	22
Future Vol, veh/h	22	701	752	15	9	22
Conflicting Peds, #/hr	3	0	0	3	1	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	738	792	16	9	23

Major/Minor	Major1	N	/lajor2	1	Minor2	
Conflicting Flow All	811	0	-	0	1588	803
Stage 1	-	-	-	-	803	-
Stage 2	-	-	-	-	785	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	815	-	-	-	119	383
Stage 1	-	-	-	-	441	-
Stage 2	-	-	-	-	449	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	813	-	-	-	113	382
Mov Cap-2 Maneuver	-	-	-	-	249	-
Stage 1	-	-	-	-	419	-
Stage 2	-	-	-	-	448	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		17.1	
HCM LOS					С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		813	-	-	-	331
HCM Lane V/C Ratio		0.028	-	-	-	0.099
HCM Control Delay (s))	9.6	-	-	-	17.1
HCM Lane LOS		А	-	-	-	С
		0.1				0.3

Int Delay, s/veh	5.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	٦	1	et –		٦	1
Traffic Vol, veh/h	177	598	574	50	28	198
Future Vol, veh/h	177	598	574	50	28	198
Conflicting Peds, #/hr	1	0	0	1	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	60	-	-	-	0	100
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	203	687	660	57	32	228

Major/Minor	Major1	Ν	/lajor2		Minor2	
Conflicting Flow All	718	0	-	0	1783	691
Stage 1	-	-	-	-	690	-
Stage 2	-	-	-	-	1070	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	883	-	-	-	90	445
Stage 1	-	-	-	-	498	-
Stage 2	-	-	-	-	321	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuve		-	-	-	69	444
Mov Cap-2 Maneuve	-r	-	-	-	69	-
Stage 1	-	-	-	-	383	-
Stage 2	-	-	-	-	321	-
Approach	EB		WB		SB	
HCM Control Delay,			0		30.6	
HCM LOS	2.1		0		D	
					5	
			EDT	14/07		
Minor Lane/Major Mv	/mt	EBL	EBT	WBT	WBR	SBLn1 SBLn2

miner Earreimajer minit				II BILOBEIII	0022	
Capacity (veh/h)	882	-	-	- 69	444	
HCM Lane V/C Ratio	0.231	-	-	- 0.466	0.513	
HCM Control Delay (s)	10.3	-	-	- 96.4	21.3	
HCM Lane LOS	В	-	-	- F	С	
HCM 95th %tile Q(veh)	0.9	-	-	- 1.9	2.9	

Queues

	→	•	+	•
Lane Group	EBT	WBL	WBT	NBL
Lane Group Flow (vph)	688	53	483	213
v/c Ratio	0.40	0.15	0.27	0.43
Control Delay	7.5	8.9	7.4	12.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	7.5	8.9	7.4	12.9
Queue Length 50th (ft)	33	5	24	34
Queue Length 95th (ft)	112	30	82	69
Internal Link Dist (ft)	379		270	218
Turn Bay Length (ft)		115		
Base Capacity (vph)	3367	700	3539	1484
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.20	0.08	0.14	0.14
Intersection Summary				

IS/MND Attachment 8 EX+P PM

Creston Road Multi-Family 3: Melody Dr & Creston Rd

HCM Signalized Intersection Capacity Analysis

	-	\mathbf{F}	4	+	•	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	≜t ≽		٦	† †	Υ.			
Traffic Volume (vph)	497	143	49	449	140	58		
Future Volume (vph)	497	143	49	449	140	58		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.5	1700	4.5	4.5	4.0	1,00		
Lane Util. Factor	0.95		1.00	0.95	1.00			
Frpb, ped/bikes	0.99		1.00	1.00	1.00			
Flpb, ped/bikes	1.00		0.99	1.00	1.00			
Frt	0.97		1.00	1.00	0.96			
Flt Protected	1.00		0.95	1.00	0.90			
	3388		1758	3539	1720			
Satd. Flow (prot)			0.38					
Flt Permitted	1.00			1.00	0.97			
Satd. Flow (perm)	3388	0.00	705	3539	1720	0.00		
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93		
Adj. Flow (vph)	534	154	53	483	151	62		
RTOR Reduction (vph)	31	0	0	0	16	0		
Lane Group Flow (vph)	657	0	53	483	197	0		
Confl. Peds. (#/hr)		13	13		10	7		
Confl. Bikes (#/hr)		8						
Turn Type	NA		Perm	NA	Prot			
Protected Phases	2			6	8			
Permitted Phases			6					
Actuated Green, G (s)	20.4		20.4	20.4	11.2			
Effective Green, g (s)	20.4		20.4	20.4	11.2			
Actuated g/C Ratio	0.51		0.51	0.51	0.28			
Clearance Time (s)	4.5		4.5	4.5	4.0			
Vehicle Extension (s)	3.0		3.0	3.0	3.0			
Lane Grp Cap (vph)	1723		358	1800	480			
v/s Ratio Prot	c0.19			0.14	c0.11			
v/s Ratio Perm			0.08					
v/c Ratio	0.38		0.15	0.27	0.41			
Uniform Delay, d1	6.0		5.2	5.6	11.8			
Progression Factor	1.00		1.00	1.00	1.00			
Incremental Delay, d2	0.1		0.2	0.1	0.6			
Delay (s)	6.1		5.4	5.7	12.3			
Level of Service	A		.ч А	., А	12.3 B			
Approach Delay (s)	6.1			5.7	12.3			
Approach LOS	0.1 A			J.7	12.3 B			
••	A			A	D			
Intersection Summary					014 6 6 6 6			
HCM 2000 Control Delay			6.9	Н	CM 2000	Level of Service	А	
HCM 2000 Volume to Capa	acity ratio		0.39				• -	
Actuated Cycle Length (s)			40.1		um of lost		8.5	
Intersection Capacity Utiliza	ation		59.2%	IC	CU Level o	of Service	В	
Analysis Period (min)			15					
c Critical Lano Group								

c Critical Lane Group

HCM 6th Signalized Intersection Summary

	→	\mathbf{r}	4	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	≜ †⊅		۲	††	¥			
Traffic Volume (veh/h)	497	143	49	449	140	58		
Future Volume (veh/h)	497	143	49	449	140	58		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	Ŭ	0.96	1.00	Ū	1.00	0.98		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No			No	No			
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	534	154	53	483	151	62		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	1532	439	550	2017	231	95		
Arrive On Green	0.57	0.57	0.57	0.57	0.19	0.19		
Sat Flow, veh/h	2793	774	752	3647	1208	496		
Grp Volume(v), veh/h	351	337	53	483	214	0		
Grp Sat Flow(s), veh/h/ln	1777	1696	752	1777	1711	0		
Q Serve(g_s), s	3.7	3.8	1.4	2.4	4.1	0.0		
Cycle Q Clear(q_c), s	3.7	3.8	5.2	2.4	4.1	0.0		
Prop In Lane	3.7	0.46	1.00	Ζ.4	0.71	0.0		
ane Grp Cap(c), veh/h	1009	963	550	2017	327	0.29		
//C Ratio(X)	0.35	0.35	0.10	0.24	0.65	0.00		
.,	3026	2889	1404	6051	1651	0.00		
Avail Cap(c_a), veh/h HCM Platoon Ratio		1.00	1404	1.00	1.00	1.00		
	1.00 1.00					0.00		
Jpstream Filter(I)		1.00	1.00	1.00	1.00			
Jniform Delay (d), s/veh	4.1	4.1	5.5	3.8	13.2	0.0		
ncr Delay (d2), s/veh	0.2	0.2	0.1	0.1	2.2	0.0		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	0.6	0.5	0.1	0.3	1.5	0.0		
Jnsig. Movement Delay, s/veh		4.0	Г /	2.0	1 - 4	0.0		
nGrp Delay(d),s/veh	4.3	4.3	5.6	3.9	15.4	0.0		
InGrp LOS	A	A	A	<u>A</u>	B	A		
Approach Vol, veh/h	688			536	214			
Approach Delay, s/veh	4.3			4.0	15.4			
Approach LOS	А			А	В			
Fimer - Assigned Phs		2				6	8	
Phs Duration (G+Y+Rc), s		24.5				24.5	10.7	
Change Period (Y+Rc), s		4.5				4.5	4.0	
Max Green Setting (Gmax), s		60.0				60.0	34.0	
Max Q Clear Time (q_c+I1), s		5.8				7.2	6.1	
Green Ext Time (p_c), s		4.9				4.0	0.7	
Intersection Summary								
HCM 6th Ctrl Delay			5.9					
HCM 6th LOS			J.7 A					
			А					

Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	- ሽ	- 11	∱ î≽		- ሽ	1
Traffic Vol, veh/h	119	439	426	49	36	72
Future Vol, veh/h	119	439	426	49	36	72
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	100	-	-	-	0	60
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	131	482	468	54	40	79

Major/Minor	Major1	Ма	ajor2	Ν	/linor2	
Conflicting Flow All	522	0	-	0	998	261
Stage 1	-	-	-	-	495	-
Stage 2	-	-	-	-	503	-
Critical Hdwy	4.14	-	-	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	1041	-	-	-	240	738
Stage 1	-	-	-	-	578	-
Stage 2	-	-	-	-	573	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-	-	-	210	738
Mov Cap-2 Maneuver	-	-	-	-	210	-
Stage 1	-	-	-	-	505	-
Stage 2	-	-	-	-	573	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.9		0		15.7	
HCM LOS					С	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	SBLn2
Capacity (veh/h)	1041	-	-	- 210	738
HCM Lane V/C Ratio	0.126	-	-	- 0.188	0.107
HCM Control Delay (s)	9	-	-	- 26.1	10.5
HCM Lane LOS	А	-	-	- D	В
HCM 95th %tile Q(veh)	0.4	-	-	- 0.7	0.4

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

Queues

IS/MND Attachment 8 EX+P PM

Creston Road Multi-Family 5: Creston Road & Golden Hill Road

HCM Signalized Intersection Capacity Analysis

	≯	+	t	•	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	† †	≜ †}		ኘኘ	1		
Traffic Volume (vph)	58	379	418	274	312	72		
Future Volume (vph)	58	379	418	274	312	72		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.5	4.1	4.1	.,	3.5	3.5		
Lane Util. Factor	1.00	0.95	0.95		0.97	1.00		
Frpb, ped/bikes	1.00	1.00	0.99		1.00	0.99		
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	1.00	0.94		1.00	0.85		
Flt Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1770	3539	3311		3433	1560		
Flt Permitted	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (perm)	1770	3539	3311		3433	1560		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	64	421	464	304	347	80		
RTOR Reduction (vph)	04	421	69	0	0	62		
Lane Group Flow (vph)	64	421	699	0	347	18		
Confl. Peds. (#/hr)	1	421	077	1	547	2		
Confl. Bikes (#/hr)	I			1		Z		
, ,	Drot	NA	NA	1	Dorm	Perm		
Turn Type Protected Phases	Prot	NA 2			Perm	Peim		
	5	Z	6		1	Λ		
Permitted Phases	7.4	20.0	10.7		4	4		
Actuated Green, G (s)	7.6	30.8	19.7		13.3	13.3		
Effective Green, g (s)	7.6	30.8	19.7		13.3	13.3		
Actuated g/C Ratio	0.13	0.53	0.34		0.23	0.23		
Clearance Time (s)	3.5	4.1	4.1		3.5	3.5		
Vehicle Extension (s)	2.0	2.0	2.0		2.0	2.0		
Lane Grp Cap (vph)	231	1879	1124		787	357		
v/s Ratio Prot	c0.04	0.12	c0.21		0.10	0.01		
v/s Ratio Perm					c0.10	0.01		
v/c Ratio	0.28	0.22	0.62		0.44	0.05		
Uniform Delay, d1	22.7	7.2	16.0		19.2	17.4		
Progression Factor	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	0.2	0.0	0.8		0.1	0.0		
Delay (s)	23.0	7.3	16.8		19.3	17.5		
Level of Service	С	А	В		В	В		
Approach Delay (s)		9.3	16.8		19.0			
Approach LOS		А	В		В			
Intersection Summary								
HCM 2000 Control Delay			15.2	Н	CM 2000	Level of Servi	се	
HCM 2000 Volume to Capad	city ratio		0.47					
Actuated Cycle Length (s)	·) ·····		58.0	S	um of losi	t time (s)		
Intersection Capacity Utilization	tion		46.9%			of Service		
Analysis Period (min)			15		, _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
c Critical Lane Group								

c Critical Lane Group

Intersection

Int Delay, s/veh	2.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	ł
Lane Configurations	Y		٦	- 11	↑ ĵ≽		
Traffic Vol, veh/h	135	6	2	235	304	111	
Future Vol, veh/h	135	6	2	235	304	111	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	ì
RT Channelized	-	None	-	None	-	None	ì
Storage Length	0	-	200	-	-	-	-
Veh in Median Storage,	,# 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	86	86	86	86	86	86	,
Heavy Vehicles, %	3	3	3	3	3	3	5
Mvmt Flow	157	7	2	273	353	129)

Major/Minor	Minor2	N	Major1	Maj	or2		
Conflicting Flow All	559	241	482	0	-	0	
Stage 1	418	-	-	-	-	-	
Stage 2	141	-	-	-	-	-	
Critical Hdwy	6.86	6.96	4.16	-	-	-	
Critical Hdwy Stg 1	5.86	-	-	-	-	-	
Critical Hdwy Stg 2	5.86	-	-	-	-	-	
Follow-up Hdwy	3.53	3.33	2.23	-	-	-	
Pot Cap-1 Maneuver	457	757	1070	-	-	-	
Stage 1	630	-	-	-	-	-	
Stage 2	868	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	456	757	1070	-	-	-	
Mov Cap-2 Maneuver	527	-	-	-	-	-	
Stage 1	629	-	-	-	-	-	
Stage 2	868	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	14.7	0.1	0
HCM LOS	В		

Minor Lane/Major Mvmt	NBL	NBT EBL	n1 S	SBT	SBR
Capacity (veh/h)	1070	- 5	34	-	-
HCM Lane V/C Ratio	0.002	- 0.3	07	-	-
HCM Control Delay (s)	8.4	- 14	1.7	-	-
HCM Lane LOS	А	-	В	-	-
HCM 95th %tile Q(veh)	0	- '	1.3	-	-

Intersection					
Intersection Delay, s/veh	16.8				
Intersection LOS	С				
Approach	EB	WB		SB	
Entry Lanes	1	1		1	
Conflicting Circle Lanes	1	1		1	
Adj Approach Flow, veh/h	1025	881		288	
Demand Flow Rate, veh/h	1046	899		294	
Vehicles Circulating, veh/h	38	196		816	
Vehicles Exiting, veh/h	1072	888		279	
Ped Vol Crossing Leg, #/h	0	0		5	
Ped Cap Adj	1.000	1.000		0.999	
Approach Delay, s/veh	16.1	18.5		14.3	
Approach LOS	С	C		В	
Lane	Left	Left	Left		
Designated Moves	LT	TR	LR		
Assumed Moves	LT	TR	LR		
RT Channelized					
Lane Util	1.000	1.000	1.000		
Follow-Up Headway, s	2.609	2.609	2.609		
Critical Headway, s	4.976	4.976	4.976		
Entry Flow, veh/h	1046	899	294		
Cap Entry Lane, veh/h	1327	1130	600		
Entry HV Adj Factor	0.980	0.980	0.980		
Flow Entry, veh/h	1025	881	288		
Cap Entry, veh/h	1301	1107	588		
V/C Ratio	0.788	0.796	0.490		
Control Delay, s/veh	16.1	18.5	14.3		
LOS	С	С	В		
95th %tile Queue, veh	9	9	3		

Intersection							
Intersection Delay, s/veh	11.9						
Intersection LOS	В						
Approach		EB		WB		SB	
Entry Lanes		1		1		1	
Conflicting Circle Lanes		1		1		1	
Adj Approach Flow, veh/h		890		717		260	
Demand Flow Rate, veh/h		908		731		266	
Vehicles Circulating, veh/h		33		207		673	
Vehicles Exiting, veh/h		906		734		265	
Ped Vol Crossing Leg, #/h		1		0		1	
Ped Cap Adj		1.000		1.000		1.000	
Approach Delay, s/veh		11.8		12.5		10.5	
Approach LOS		В		В		В	
Lane	Left		Left		Left		
Designated Moves	LT		TR		LR		
Assumed Moves	LT		TR		LR		
RT Channelized							
Lane Util	1.000		1.000		1.000		
Follow-Up Headway, s	2.609		2.609		2.609		
Critical Headway, s	4.976		4.976		4.976		
Entry Flow, veh/h	908		731		266		
Cap Entry Lane, veh/h	1334		1117		695		
Entry HV Adj Factor	0.980		0.981		0.977		
Flow Entry, veh/h	890		717		260		
Cap Entry, veh/h	1308		1096		679		
V/C Ratio	0.681		0.654		0.383		
Control Delay, s/veh	11.8		12.5		10.5		
LOS	В		В		В		
95th %tile Queue, veh	6		5		2		

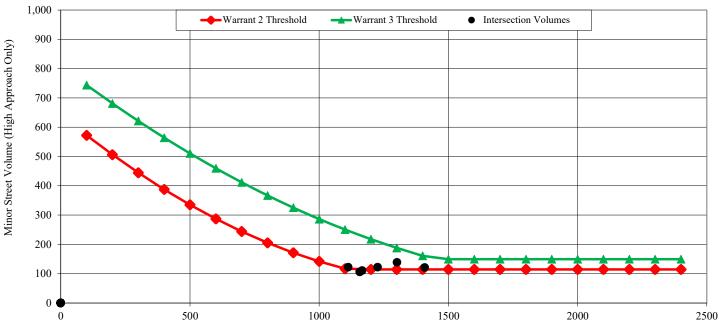
Appendix C: Signal Warrant

IS/MND Attachment 8 Traffic Signal Warrant Analysis

Warrants 1 - 3 (Volume Warrants)

Project Name					
Project/File #	2	2022 249			
Scenario	Existi	– Existing Weekday			
	Intersec	tion Information			
Major Street (E/W Road)	Creston Road	Minor Street (N/S Road)	Rolling Hills Road		
Analyzed with	1 approach lane	Analyzed with	2 or more approach lanes		
Total Approach Volume	7370 vehicles	Total Approach Volume	1120 vehicles		
Total Ped/Bike Volume	13 crossings	Total Ped/Bike Volume	4 crossings		
Right turn reduction of	0 percent applied	40 percent applied			

No high speed or isolated community reduction applied to the Volume Warrant thresholds.


Warrant 1, Eight Hour Vehicular Volume							
Condition A Condition B Condition A+B*							
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied				
Required values reached for	0 hours	6 hours	0 (Cond. A) & 6 (Cond. B)				
Criteria - Major Street (veh/hr)	500	750	400 (Cond. A) & 600 (Cond. B)				
Criteria - Minor Street (veh/hr)	200	100	160 (Cond. A) & 80 (Cond. B)				

* Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Venicular Volume						
Condition Satisfied?	Satisfied					
Required values reached for	4 hours					
Criteria	See Figure Below					

Warrant 3, Peak Hour Venicular Volume						
	Condition A	Condition B				
Condition Satisfied?	Not Satisfied	Not Satisfied				
Required values reached for	1520 total, 219 minor, 2.5 delay	0 hours				
Criteria - Total Approach Volume (veh in one hour)	650					
Criteria - Minor Street High Side Volume (veh in one hour)	150	See Figure Below				
Criteria - Minor Street High Side Delay (veh-hrs)	5					

Figure 4C-1 (Warrant 2) & Figure 4C-3 (Warrant 3)

Mitigation Monitoring and Reporting Plan

Project File No./Name: Rolling Hills Apartment Project Approving Resolution No.:____ by: Planning Commission City Council

Date:_____

The following environmental mitigation measures were either incorporated into the approved plans or will be incorporated into the conditions of approval. Each and every mitigation measure listed below has been found by the approving body indicated above to lessen the level of environmental impact of the project to a level of non-significance. A completed and signed checklist for each mitigation measure indicates that it has been completed.

Explanation of Headings:

Туре:	Project, ongoing, cumulative
	Department or Agency responsible for monitoring a particular mitigation measure
	When a mitigation measure is shown on the plans, this column will be initialed and dated.
Verified Implementation:	When a mitigation measure has been implemented, this column will be initialed and dated.
Remarks:	Area for describing status of ongoing mitigation measure, or for other information.

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
BIO-1. Work Timing. All work activities shall be	Project	CDD /	Х	Notes shown on	Prior to issuance of
completed during daylight hours (between sunrise and		Qualified		construction	grading permit.
sunset) and outside of rain events.		Biologist		documents. Site	
				inspection as needed.	
BIO-2. Work Limits. The Project impact area shall be	Project	CDD /	Х	Notes shown on	Prior to issuance of
clearly marked or delineated with stakes, flagging, tape,		Qualified		construction	grading permit.
or signage prior to work. Areas outside of work limits		Biologist		documents. Site	
shall be considered environmentally sensitive and shall not be disturbed.				inspection as needed.	

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
BIO-3. Vehicles and Equipment. All equipment and vehicles shall be checked and maintained daily to prevent spills of fuel, oil, and other hazardous materials. A designated staging area shall be established for vehicle/equipment parking and storage of fuel, lubricants, and solvents. All fueling and maintenance activities shall take place in the staging area.	Project	CDD	x	Notes shown on construction documents.	Ongoing during grading and construction
BIO-4. Pre-Activity Nesting Bird Survey. If vegetation removal (i.e., tree trimming/removal activities) is scheduled between February 1 and August 31 (general nesting bird season), nesting bird surveys shall be completed by a qualified biologist within 48 hours prior to start of work. If any active nests are discovered within or adjacent to work limits, an appropriate buffer (i.e., 500 feet for raptors and 250 feet for other birds, or at the discretion of a qualified biologist based on biological or ecological reasons) shall be established to protect the nest until a qualified biologist has determined that the nest is no longer active and/or the young have fledged.	Project	CDD / Qualified Biologist	X	Notes shown on construction documents. Verification from qualified biologist.	Prior to issuance of grading permit.
BIO-5. Pre-Activity Special-Status Species Survey. Within 30 days of the start of construction, a qualified biologist shall conduct a pre-activity survey of the Project Site for signs of San Joaquin kit fox and American badger, including tracks, scat, or suitable	Project	CDD / Qualified Biologist	X	Notes shown on construction documents. Verification from qualified biologist.	Prior to issuance of grading permit.

Mitigation Monitoring Program – Page 2 of 12

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
 burrows (burrows four inches or greater in diameter). Potential dens shall be tracked for a minimum of four nights with motion-activated cameras to determine if the burrow is actively being used by San Joaquin kit fox or badger. All potential dens shall be avoided by a minimum of 50 feet until they have been determined to be inactive. In the event San Joaquin kit fox is identified within the Project Site, the USFWS, CDFW, and all other appropriate agencies/government entities shall be contacted for further consultation. In conjunction with the badger and San Joaquin kit fox survey, the qualified biologist will conduct a survey for Northern legless lizard. Hand search methods, including raking, will be used during the survey in areas where legless lizards are expected to be found (e.g., under shrubs/leaf litter, other vegetation, or debris). If observed, the qualified biologist will relocate the lizard to nearby suitable habitat. The qualified biologist will prepare a completion letter-report to document the 					
pre-activity survey results. BIO-6. Oak Tree Removal. If oak tree removal and/or damage is unavoidable due to Project implementation, the City may require mitigation for impacts to mature oak trees. Mitigation may require preparation of an oak tree protection and replacement plan that would provide guidance for onsite and/or offsite oak tree replacement planting. Mitigation planting replacement	Project	CDD	X	Notes shown on construction documents.	Prior to issuance of grading permit.

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
ratio (oak trees removed to oak trees planted) would be determined by the County.					
BIO-7. To fully mitigate proposed impacts to the native valley oak, the project owner(s) shall implement the Mitigation Recommendations provided in the November 2, 2022, Tree Evaluation Letter prepared by Heritage Tree Arboricultural Consulting.	Project	CDD/Project Arborist	X	Notes shown on construction documents.	Site inspection prior to final.
 BIO-7. Tree Protection Zone Restrictions for Trees No. 83 and 84 shall be as follows: Tree Protection During Construction - Tree protection shall be provided during the entire time construction activities occur. A Tree Protection Zone (TPZ) shall be established and maintained to ensure protected roots remain undisturbed. Tree Protection Fencing - Tree protection fencing is required to be in place for the duration of the construction project and shall be installed before starting any ground disturbing activities. Do not remove any tree protection fencing or enter the TPZ without approval of the project arborist. The fencing shall delineate and protect the tree protection zone. The fencing shall be 4 feet tall and made of orange, high density, polyethylene with 3.5" x 1.5" openings. 	Project	CDD / Project Arborist	X	Notes shown on construction documents.	Prior to issuance of grading permit. Site inspection as needed.

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
 It shall be installed on steel posts 8 feet on center and tightly stretched to prevent sagging. See Appendix C - Tree Protection Diagrams - Diagram 1 – Tree Protection Fencing. Trunk Protection - Tree protection fencing is required See Appendix C of the Report - Tree Protection Diagrams - Diagram 2 – Trunk Protection. 					
 Tree Protection Signage - Weatherproof, tree protection signs stating "Tree Protection Zone – Do Not Enter" shall be placed on the fencing and be spaced 10 feet apart. Signs shall also include the project arborists and the project forepersons contact information. Signs shall remain in place until completion of the project and the city has given a certificate of occupation. See Appendix C of the Report - Tree Protection Diagrams - Diagram 1 – Tree Protection Fencing. 					
 Pre-Construction Meeting - A meeting with all contractors involved in the project shall occur with the project arborist before beginning construction activities. Any new contractors brought on site shall also meet or communicate 					

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
with the project arborist to ensure they are aware of tree protection measures.					
 Preparing Tree Protection Zone - If construction occurs during the months of June through November, the TPZ's shall be irrigated to a depth of 12 inches before construction begins. This will ensure the trees are properly hydrated. Additional irrigations during "heat-waves" may be recommended by the project arborist. Root Protection - No grading, trenching, paving or any other soil disturbance shall occur within or adjacent to the TPZ of the tree without permission and supervision by the project arborist. No trenching or excavation for footings, foundations, utilities or roadways shall occur within or adjacent to the TPZ without first, hand trenching the location and exposing roots. 					
If possible, conduit or other utilities shall be "fished" below roots larger than 1-inch diameter. Any roots 1-inch diameter or larger that are approved for pruning shall be hand cut with a clean pruning saw or Sawzall. Once roots are hand cut, machinery can remove the severed roots. Cutting any roots 1-inch diameter					

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
or larger requires supervision by the project arborist.					
• Root Pruning - If the project arborist determines that a root over 1-inch diameter needs to be cut, it shall be cut by hand with a pruning saw or reciprocating saw "Sawzall". After cutting a root, the area shall be backfilled as soon as possible with moist soil or covered with wet burlap until backfill can be completed. Burlap shall be kept wet the entire time it is in use for cut-root protection.					
• Dumping, Cleanout or Storage of Materials - No construction materials, soils, or debris shall be stored in the TPZ. No concrete, plaster, paint or chemical washout shall be allowed within the TPZ or Critical Root Zone (CRZ).					
 Monitoring - An initial inspection shall be completed by the project arborist prior to commencement of construction activities to ensure that all tree protection measures have been put in place. Weekly inspections of the TPZ and associated fencing shall also be completed by the project arborist until construction is complete. Any root pruning, excavation, grading 					

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
or filling within 5 feet of the TPZ shall a be monitored by the project arborist.					
CUL-1. A trained and qualified archaeological monitor and Native American tribal monitor should perform cultural resources monitoring of initial ground disturbing activities associated with the Project that has the potential to impact cultural resources (i.e. grading, trenching). Monitoring is not effective during activities where the soil matrix is not visually exposed (i.e. pile- driving for installation of solar pylons). The monitors will have the ability to redirect construction activities to ensure avoidance of significant impacts to cultural resources.	Project	CDD / Project Archaeologist	X	Notes on construction documents.	Prior to issuance of grading permit.
CUL-2. Training. Prior to any ground-disturbing activities, the field archaeologist shall conduct awareness training for the field crew and supervisors. This will include a description of the types of artifacts that may be encountered and a discussion of why these are of importance to the Native American community, as well as for an understanding of local history. Pertinent laws and regulations protecting archaeological sites will be briefly reviewed and any archaeologists monitoring methods will be explained.	Project	CDD / Archaeologist	X	Notes on construction documents.	Prior to issuance of grading permit.
CUL-3. In the event that these resources are inadvertently discovered during ground-disturbing	Project	Project Archaeologist, SLO County	Х	As needed	Ongoing during grading and construction.

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
 activities, work must be halted within 50 feet of the find until it can be evaluated by a qualified archaeologist. Construction activities could continue in other areas. If the discovery proves to be significant, additional work, such as data recovery excavation or fossil recovery, may be warranted and would be discussed in consultation with the appropriate regulatory agency(ies). Any potentially significant artifacts, sites or features observed shall be collected and recorded in conjunction with best management practices and professional standards. Any cultural items recovered during mitigation should be deposited in an accredited and permanent scientific institution for the benefit of current and future generations. A report documenting the results of the monitoring efforts, including any data recovery activities and the significance of any cultural resources will be prepared and submitted to the appropriate City and County personnel. 		Coroner, Native American Heritage Commission			
Procedures of conduct following the discovery of human remains on non-federal lands have been mandated by California Health and Safety Code §7050.5, PRC §5097.98 and the California Code of Regulations (CCR) §15064.5(e). According to the provisions in CEQA, should human remains be					

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
encountered, all work in the immediate vicinity of the burial must cease, and any necessary steps to insure the integrity of the immediate area must be taken. The Orange County Coroner will be immediately notified. The Coroner must then determine whether the remains are Native American. If the Coroner determines the remains are Native American, the Coroner has 24 hours to notify the NAHC, who will, in turn, notify the person they identify as the most likely descendent (MLD) of any human remains. Further actions will be determined, in part, by the desires of the MLD. The MLD has 48 hours to make recommendations regarding the disposition of the remains following notification from the NAHC of the discovery. If the MLD does not make recommendations within 48 hours, the owner shall, with appropriate dignity, reinter the remains in an area of the property secure from further disturbance. Alternatively, if the owner or the descendent may request mediation by the NAHC.					
TR-1. The Creston Road driveway shall be limited to left-in, right-in, right-out only.	Project	CDD / City Engineer		Shown on building plans.	Before building permit issuance.
TR-2. The project shall include a small median in the two-way left turn lane to allow left turns into the site and the driveway across Creston Road but restrict outbound left turns on to Creston Road.	Project	CDD / City Engineer		Shown on building plans.	Before building permit issuance.

Mitigation Measure PD22-08 / OTR 22-16	Туре	Monitoring Department or Agency	Shown on Plans	Verified Implementation	Timing/Remarks
 TR-3. The project shall construct the following improvements consistent with the Creston Road Complete and Sustainable Streets Study: Extend curb, gutter, and sidewalk improvements on the north side of Creston Road from project frontage to Orchard Drive. Install curb ramps and bulbouts on the north and south side of Creston Road at the existing Orchard Drive crosswalk. Replace existing school crossing signage at Orchard Drive with CAMUTCD compliant signage. Replace overhead sign with S1-1 sign, replace pole mounted sign with SW24-2(CA) sign, and install SW-24-3 (CA) sign in advance of the crosswalk. Replace existing overhead flashing beacons with overhead and pole mounted rectangular rapid flashing beacons (RRFB). 	Project	CDD / City Engineer		Shown on building plans.	Before building permit issuance.
TR-4. The City's Pedestrian and Bicycle Master Plan includes buffered Class II bike lanes on Creston Road and Class II bike lanes on Rolling Hills Road adjacent to the project site. The project frontage improvements shall incorporate the width to accommodate the future Class II facilities.	Project	CDD / City Engineer		Shown on building plans.	Before building permit issuance.

(add additional measures as necessary)

Explanation of Headings:

Type:Project, ongoing, cumulative

Monitoring Department or Agency:	Department or Agency responsible for monitoring a particular mitigation measure
Shown on Plans:	When a mitigation measure is shown on the plans, this column will be initialed and dated.
Verified Implementation:	When a mitigation measure has been implemented, this column will be initialed and dated.
Remarks:	Area for describing status of ongoing mitigation measure, or for other information.